End-to-End Performance-Based Autonomous VNF Placement With Adopted Reinforcement Learning

Research output: Contribution to journalArticle (Academic Journal)peer-review

7 Citations (Scopus)
29 Downloads (Pure)


The autonomous placement of Virtual Network Functions (VNFs) is a key aspect of Zero-touch network and Service Management (ZSM) in Fifth Generation (5G) networking. Therefore, current orchestration frameworks need to be enhanced, accordingly. To address this need, this work presents an Adapted REinforcement Learning VNF Performance Prediction module for Autonomous VNF Placement, namely AREL3P. Our solution design bears a dual novelty. First, it leverages end-to-end service level performance predictions for placing VNFs. Second, whereas the majority of other Machine Learning efforts in the literature use Supervised Learning (SL) techniques, AREL3P is based on a particular form of Reinforcement Learning adapted to predictions. This makes placement decisions more resilient to dynamic conditions, as well as portable to other network nodes, and able to generalize in heterogeneous network environments. Backed by a meticulous performance evaluation over a real 5G end-to-end testbed, we verify the above properties after integrating AREL3P to Open Source Management and Orchestration (OSM MANO) decisions. Among other highlights, we show increased VNF performance predictions accuracy by 40 - 45%, and an overall improved VNF placement efficiency against other SL benchmarks reflected by near-optimal decision scores in 23 out of a total of 27 investigated scenarios.
Original languageEnglish
Pages (from-to)534-547
Number of pages14
JournalIEEE Transactions on Cognitive Communications and Networking
Issue number2
Publication statusPublished - 17 Apr 2020

Bibliographical note

The acceptance date for this record is provisional and based upon the month of publication for the article.


  • cloud and edge computing
  • end-to-end communication
  • Machine learning
  • network function virtualization
  • zero-touch management


Dive into the research topics of 'End-to-End Performance-Based Autonomous VNF Placement With Adopted Reinforcement Learning'. Together they form a unique fingerprint.

Cite this