TY - JOUR
T1 - Energy harvesting study on single and multilayer ferroelectret foams under compressive force
AU - Luo, Z
AU - Zhu, D
AU - Beeby, Steve
AU - Zhang, C
AU - Proynov, Plamen
AU - Stark, Bernard
PY - 2015/6
Y1 - 2015/6
N2 - Cellular polypropylene (PP) ferro electret is a thin and flexible cellular polymer foam that generates electrical power under mechanical force. This work investigates single and multilayer ferro electret PP foams and their potential to supply energy for human-body-worn sensors. Human foot-fall is emulated using an electrodynamic instrument, allowing applied compressive force and momentum to be correlated with energy output. Peak power, output pulse duration, and energy per strike is derived experimentally as a function of force and momentum, and shown to be a strong function of external load resistance, thus providing a clear maximum energy point. The possibility of increasing pulse time and reducing voltage to CMOS compatible levels at some expense of peak power is shown. To further increase the output power, multilayer ferro electret is presented. The synchronized power generation of each layer is studied and illustrated using simulation, and results are supported by experiments. Finally, the energy output of single-layer and multi-layer ferro electrets are compared by charging a capacitor via a rectifier. A ten-layer ferro electret is shown to have charging ability 29.1 times better than that of the single-layer ferro electret. It demonstrates energy output that is capable of powering the start-up and transmission of a typical low-power wireless sensor chipset.
AB - Cellular polypropylene (PP) ferro electret is a thin and flexible cellular polymer foam that generates electrical power under mechanical force. This work investigates single and multilayer ferro electret PP foams and their potential to supply energy for human-body-worn sensors. Human foot-fall is emulated using an electrodynamic instrument, allowing applied compressive force and momentum to be correlated with energy output. Peak power, output pulse duration, and energy per strike is derived experimentally as a function of force and momentum, and shown to be a strong function of external load resistance, thus providing a clear maximum energy point. The possibility of increasing pulse time and reducing voltage to CMOS compatible levels at some expense of peak power is shown. To further increase the output power, multilayer ferro electret is presented. The synchronized power generation of each layer is studied and illustrated using simulation, and results are supported by experiments. Finally, the energy output of single-layer and multi-layer ferro electrets are compared by charging a capacitor via a rectifier. A ten-layer ferro electret is shown to have charging ability 29.1 times better than that of the single-layer ferro electret. It demonstrates energy output that is capable of powering the start-up and transmission of a typical low-power wireless sensor chipset.
U2 - 10.1109/TDEI.2015.7116323
DO - 10.1109/TDEI.2015.7116323
M3 - Article (Academic Journal)
SN - 1070-9878
VL - 22
SP - 1360
EP - 1368
JO - IEEE Transactions on Dielectrics and Electrical Insulation
JF - IEEE Transactions on Dielectrics and Electrical Insulation
IS - 3
ER -