Skip to content

Entanglement enhances cooling in microscopic quantum refrigerators

Research output: Contribution to journalArticle

Original languageEnglish
Article number032115
JournalPhysical Review E: Statistical, Nonlinear, and Soft Matter Physics
Issue number3
Early online date26 May 2013
DateE-pub ahead of print - 26 May 2013
DatePublished (current) - 13 Mar 2014


Small self-contained quantum thermal machines function without external source of work or control but using only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned - fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the enhancement in cooling.

    Research areas

  • quantum , thermodynamics, Entanglement


View research connections

Related faculties, schools or groups