Estimating the Limits of Organism-Specific Training for Epitope Prediction

Jodie Ashford, Anikó Ekárt, Felipe Campelo*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

1 Citation (Scopus)

Abstract

The identification of linear B-cell epitopes is an important task in the development of vaccines, therapeutic antibodies and several diagnostic tests. Recently, organism-specific training has been shown to improve prediction performance for data-rich organisms. This article investigates the limits of organism-specific training for epitope prediction, by systematically quantifying the effect of the amount of training data on the performance of the models developed. The results obtained indicate that even models trained on small organism-specific data sets can outperform similar models trained on much larger heterogeneous and mixed data sets, as well as widely-used predictors from the literature, which are trained on heterogeneous data. These results suggest the potential for a much broader applicability of pathogen-specific models, which can be used to accelerate the development of diagnostic tests and vaccines in the context of emerging pathogens and to support faster responses in future disease outbreaks.

Original languageEnglish
Title of host publicationProceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
EditorsXingpeng Jiang, Haiying Wang, Reda Alhajj, Xiaohua Hu, Felix Engel, Mufti Mahmud, Nadia Pisanti, Xuefeng Cui, Hong Song
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages4195-4202
Number of pages8
ISBN (Electronic)9798350337488
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023 - Istanbul, Turkey
Duration: 5 Dec 20238 Dec 2023

Publication series

NameProceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023

Conference

Conference2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
Country/TerritoryTurkey
CityIstanbul
Period5/12/238/12/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

Fingerprint

Dive into the research topics of 'Estimating the Limits of Organism-Specific Training for Epitope Prediction'. Together they form a unique fingerprint.

Cite this