TY - JOUR
T1 - Evaluation of the Biotechnological Potential of Pure and Mixture of Indigenous Iron-Oxidizing Bacteria to Dissolve Trace Metals from Cu Bearing Ore
AU - Sajjad, Wasim
AU - Guodong, Zheng
AU - Rafiq, Muhammad
AU - Xiangxian, Ma
AU - Khan, Suliman
AU - Haq, Abdul
AU - Ali, Barkat
AU - Zada, Sahib
PY - 2019/9/14
Y1 - 2019/9/14
N2 - This study aimed to investigate the ability of pure and consortia of indigenous iron-oxidizing bacteria to enhance the dissolution of trace metals from Cu and Zn-bearing ore. Three bacterial strains Acidithiobacillus ferrooxidans strain WG101, Leptospirillum ferriphilum strain WG102, Leptospirillum ferrooxidans strain WG103 isolated from Baiyin copper mine, China were used in this study. The biotechnological potential of these indigenous isolates was evaluated both in pure and in consortia to extract cobalt, chromium, and lead from the copper and zinc bearing ore. The sulfur and iron-oxidizing bacterial isolate Acidithiobacillus ferrooxidans strain WG101 exhibited efficient dissolution compared to sole iron-oxidizing Leptospirillum ferriphilum strain WG102, and Leptospirillum ferrooxidans strain WG103. Initial medium pH, pulp density, and temperature were studied as influential parameters in bioleaching carried out by bacterial consortia. The achieved optimum conditions were; initial pH of 1.5, 10% of pulp density, and temperature 30 °C with 68.7 ± 3.9% cobalt, 56.6 ± 3.9% chromium, and 36 ± 3.7% lead recovery. Analytical study of oxidation-reduction potential and pH fluctuation were observed during this whole process that shows the metal dissolution efficiency of bacterial consortia. Alterations in spectral bands of processed residues were reported through FTIR analysis compared with control ore sample. Mössbauer spectroscopy analysis showed the influence of bacterial consortia on iron speciation in bioleached samples. The findings confirm that the indigenous acidophilic iron-oxidizing bacterial strains are highly effective in the dissolution of trace elements present in ore samples. This study not only supports the notion that indigenous bacterial strains are highly effectual in metal dissolution but provides the basic vital conditions to upscale the bioleaching technique for metals dissolution.
AB - This study aimed to investigate the ability of pure and consortia of indigenous iron-oxidizing bacteria to enhance the dissolution of trace metals from Cu and Zn-bearing ore. Three bacterial strains Acidithiobacillus ferrooxidans strain WG101, Leptospirillum ferriphilum strain WG102, Leptospirillum ferrooxidans strain WG103 isolated from Baiyin copper mine, China were used in this study. The biotechnological potential of these indigenous isolates was evaluated both in pure and in consortia to extract cobalt, chromium, and lead from the copper and zinc bearing ore. The sulfur and iron-oxidizing bacterial isolate Acidithiobacillus ferrooxidans strain WG101 exhibited efficient dissolution compared to sole iron-oxidizing Leptospirillum ferriphilum strain WG102, and Leptospirillum ferrooxidans strain WG103. Initial medium pH, pulp density, and temperature were studied as influential parameters in bioleaching carried out by bacterial consortia. The achieved optimum conditions were; initial pH of 1.5, 10% of pulp density, and temperature 30 °C with 68.7 ± 3.9% cobalt, 56.6 ± 3.9% chromium, and 36 ± 3.7% lead recovery. Analytical study of oxidation-reduction potential and pH fluctuation were observed during this whole process that shows the metal dissolution efficiency of bacterial consortia. Alterations in spectral bands of processed residues were reported through FTIR analysis compared with control ore sample. Mössbauer spectroscopy analysis showed the influence of bacterial consortia on iron speciation in bioleached samples. The findings confirm that the indigenous acidophilic iron-oxidizing bacterial strains are highly effective in the dissolution of trace elements present in ore samples. This study not only supports the notion that indigenous bacterial strains are highly effectual in metal dissolution but provides the basic vital conditions to upscale the bioleaching technique for metals dissolution.
KW - Acidithiobacillus ferrooxidans
KW - bioleaching
KW - iron-oxidizing bacteria
KW - Mössbauer spectroscopy
KW - trace metals
UR - http://www.scopus.com/inward/record.url?scp=85065703569&partnerID=8YFLogxK
U2 - 10.1080/01490451.2019.1611974
DO - 10.1080/01490451.2019.1611974
M3 - Article (Academic Journal)
AN - SCOPUS:85065703569
SN - 0149-0451
VL - 36
SP - 715
EP - 726
JO - Geomicrobiology Journal
JF - Geomicrobiology Journal
IS - 8
ER -