Evidence of concurrent local adaptation and high phenotypic plasticity in a polar microeukaryote

Karin Rengefors, Ramiro Logares, Jo Laybourn-Parry, Rebecca Gast

Research output: Contribution to journalArticle (Academic Journal)peer-review

33 Citations (Scopus)


Here we investigated whether there is evidence of local adaptation in strains of an ancestrally marine dinoflagellate to the lacustrine environment they now inhabit (optimal genotypes) and/or if they have evolved phenotypic plasticity (a range of phenotypes). Eleven strains of Polarella glacialis were isolated and cultured from three different environments: the polar seas, a hyposaline and a hypersaline lake. Local adaptation was tested by comparing growth rates of lacustrine and marine strains at their own and reciprocal site conditions. To determine phenotypic plasticity, we measured the reaction norm for salinity. We found evidence of both limited local adaptation and higher phenotypic plasticity in lacustrine strains when compared to marine ancestors. At extreme high salinities local lake strains out performed the other strains, and at extreme low salinities, strains from the hyposaline lake out performed all other strains. The data suggest that lake populations may have evolved higher phenotypic plasticity in the lake habitats compared to the sea, presumably due to the high temporal variability in salinity in the lacustrine systems. Moreover, the interval of salinity tolerance differed between strains from the hyposaline and hypersaline lakes, indicating local adaptation promoted by different salinity.
Original languageEnglish
JournalEnvironmental Microbiology
Publication statusPublished - 2014


Dive into the research topics of 'Evidence of concurrent local adaptation and high phenotypic plasticity in a polar microeukaryote'. Together they form a unique fingerprint.

Cite this