TY - JOUR
T1 - Examining the thermo-mechanical properties of novel cyanate ester blends through empirical measurement and simulation
AU - Crawford, Alasdair O.
AU - Howlin, Brendan J.
AU - Cavalli, Gabriel
AU - Hamerton, Ian
PY - 2012/9
Y1 - 2012/9
N2 - Three cyanate ester monomer or oligomer species: 2,2-bis(4-cyanatophenyl) propane 1, 1-1-bis(4-dicyanatophenyl)ethane 2, and the oligomeric phenolic cyanate (Primaset™ PT30) 3, are blended in various ratios to form binary mixtures, formulated with copper(II) acetylacetonate (200 ppm) in dodecylphenol (1% w/v active copper suspension) and cured (2 K/min to 150 °C + 1 h; 2 K/min to 200 °C + 3 h) followed by a post cure (2 K/min to 260 °C + 1 h). Thermal analysis using DSC reveals good agreement with literature data for the homopolymers: typical polymerisation enthalpies of ca. 97-98 kJ/mol. cyanate are obtained for 1 and 2, with slightly lower values (ca. 80-90 kJ/mol.) obtained for Primaset™ PT30. DMTA data show the possibility of using binary blends of the polymers to yield novel materials with similar thermal and mechanical properties to Primaset™ PT30, while improving the processability of the more highly aromatic oligomer. Two of the homopolymers (1 and 2) and a binary (1:1) blend of the same were simulated. Molecular dynamics experiments reveal good agreement with empirical data generated using DSC, DMTA and TGA.
AB - Three cyanate ester monomer or oligomer species: 2,2-bis(4-cyanatophenyl) propane 1, 1-1-bis(4-dicyanatophenyl)ethane 2, and the oligomeric phenolic cyanate (Primaset™ PT30) 3, are blended in various ratios to form binary mixtures, formulated with copper(II) acetylacetonate (200 ppm) in dodecylphenol (1% w/v active copper suspension) and cured (2 K/min to 150 °C + 1 h; 2 K/min to 200 °C + 3 h) followed by a post cure (2 K/min to 260 °C + 1 h). Thermal analysis using DSC reveals good agreement with literature data for the homopolymers: typical polymerisation enthalpies of ca. 97-98 kJ/mol. cyanate are obtained for 1 and 2, with slightly lower values (ca. 80-90 kJ/mol.) obtained for Primaset™ PT30. DMTA data show the possibility of using binary blends of the polymers to yield novel materials with similar thermal and mechanical properties to Primaset™ PT30, while improving the processability of the more highly aromatic oligomer. Two of the homopolymers (1 and 2) and a binary (1:1) blend of the same were simulated. Molecular dynamics experiments reveal good agreement with empirical data generated using DSC, DMTA and TGA.
KW - Cyanate esters
KW - Molecular simulation
KW - Polymer blends
UR - http://www.scopus.com/inward/record.url?scp=84863198012&partnerID=8YFLogxK
U2 - 10.1016/j.reactfunctpolym.2012.05.012
DO - 10.1016/j.reactfunctpolym.2012.05.012
M3 - Article (Academic Journal)
AN - SCOPUS:84863198012
SN - 1381-5148
VL - 72
SP - 596
EP - 605
JO - Reactive and Functional Polymers
JF - Reactive and Functional Polymers
IS - 9
ER -