Abstract
This work describes the experimental and numerical behaviour of sandwich panels made of aluminium skins and bamboo core under low-velocity impact test. A statistical design is carried out to evaluate the effect of the bamboo diameter (Ø20 and Ø30 mm) and the adhesive type (epoxy and biopolymer) on the maximum load, energy to maximum load, total deflection and total energy of the panels, which are assessed through graphical and failure analysis. A non-linear finite element (FE) analysis is developed to simulate the low-velocity impact test and to predict the failure mechanisms of the skins, bamboo core and adhesive. The experimental results show that, unlike the adhesive type, the bamboo diameter variation does not significantly affect the impact properties. Sandwich panels made of epoxy adhesive exhibit greater rigidity and lower maximum load than those with biopolymer, resulting in premature core-face debonding. On the other hand, sandwich panels made with biopolymer have a greater capacity for absorbing energy and maintaining structural integrity. The numerical simulation indicates a good correlation with the experimental data for load-displacement impact curves, kinematic energy-time curves, perforation process and failure modes.
Original language | English |
---|---|
Article number | 123437 |
Journal | Construction and Building Materials |
Volume | 292 |
Early online date | 1 May 2021 |
DOIs | |
Publication status | Published - 19 Jul 2021 |
Bibliographical note
Funding Information:LAdO and THP would like to thank the Bristol Composites Institute (ACCIS), and the University of Bristol for the logistical support provided during the panel tests. The authors would like to thank the Brazilian Research Agencies, CAPES (PhD scholarship), CNPq (PQ 309885/2019-1) and FAPEMIG (PPM) for the financial support provided.
Funding Information:
LAdO and THP would like to thank the Bristol Composites Institute (ACCIS), and the University of Bristol for the logistical support provided during the panel tests. The authors would like to thank the Brazilian Research Agencies, CAPES (PhD scholarship), CNPq ( PQ 309885/2019-1 ) and FAPEMIG (PPM) for the financial support provided.
Publisher Copyright:
© 2021 Elsevier Ltd
Keywords
- sandwich panel
- bamboo core
- biopolymer
- energy absorption
- low-velocity impact