Projects per year
Abstract
Magnetic resonance imaging (MRI) is a crucial tool for clinical brain tumor detection and delineation. Since the process of gross tumor volume delineation resides with clinicians, a better understanding of how they perform this task is required if improvements in life expectancy are to be made. Novice-expert comparison studies have been used to examine the effect of expertise on abnormality detection, but little research has investigated expertise-related differences in brain tumor delineation. In this study, undergraduate students (novices) and radiologists (experts) inspected a combination of T1 and T2 single and whole brain MRI scans, each containing a tumor. Using a tablet and stylus to provide an interactive environment, participants had an unlimited amount of time to scroll freely through the MRI slices and were instructed to delineate (i.e. draw a boundary) around any tumorous tissue. There was no reliable evidence for a difference in the gross tumor volume or total number of slices delineated between experts and novices. Agreement was low across both expertise groups and significantly lower at peripheral locations within a tumor than central locations. There was an interaction between expertise level and location within a tumor with experts displaying higher agreement at the peripheral slices than novices. An effect of brain image set on the order in which participants inspected the slices was also observed. The implications of these results for the training undertaken by early career radiologists and current practices in hospitals are discussed.
Original language | English |
---|---|
Article number | 1628 |
Number of pages | 10 |
Journal | Frontiers in Psychology |
Volume | 8 |
DOIs | |
Publication status | Published - 20 Sept 2017 |
Research Groups and Themes
- Memory
Keywords
- Brain tumor
- novice-expert differences
- tumor delineation
- medical image perception
- radiological diagnosis
Fingerprint
Dive into the research topics of 'Expertise affects inter-observer agreement at peripheral locations within a brain tumor'. Together they form a unique fingerprint.Projects
- 2 Finished
-
EPSRC Fellowship - Soft robotic technologies for next generation bio integrative medical devices
Rossiter, J. M. (Principal Investigator)
1/10/15 → 31/03/21
Project: Research
-
Copy of Wearable soft robotics for independent living
Rossiter, J. M. (Principal Investigator)
1/07/15 → 31/12/18
Project: Research
Profiles
-
Professor Chris Kent
- School of Psychological Science - Professor of Cognitive Psychology
- Bristol Neuroscience
Person: Academic , Member