Projects per year
Abstract
Excited states formed by electron promotion to an antibonding σ* orbital
are now recognized as key to understanding the photofragmentation dynamics of a broad range of heteroatom containing small molecules: alcohols, thiols, amines, and many of their aromatic analogues. Such excited states may be populated by direct photoexcitation, or indirectly by nonadiabatic transfer of population from some other optically excited state (e.g., a ππ* state). This Perspective explores the extent to which the fast-growing literature pertaining to such (n/π)σ*-state mediated bond fissions can inform and enhance our mechanistic understanding of photoinduced ring-opening in heterocyclic molecules.
are now recognized as key to understanding the photofragmentation dynamics of a broad range of heteroatom containing small molecules: alcohols, thiols, amines, and many of their aromatic analogues. Such excited states may be populated by direct photoexcitation, or indirectly by nonadiabatic transfer of population from some other optically excited state (e.g., a ππ* state). This Perspective explores the extent to which the fast-growing literature pertaining to such (n/π)σ*-state mediated bond fissions can inform and enhance our mechanistic understanding of photoinduced ring-opening in heterocyclic molecules.
Original language | English |
---|---|
Pages (from-to) | 3440-3451 |
Number of pages | 12 |
Journal | Journal of Physical Chemistry Letters |
Volume | 8 |
Issue number | 14 |
DOIs | |
Publication status | Published - 29 Jun 2017 |
Fingerprint
Dive into the research topics of 'Exploring the dynamics of the photoinduced ring-opening of heterocyclic molecules'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Chemical Applications of Velocity & Spatial Imaging
Orr-Ewing, A. J. (Researcher) & Ashfold, M. N. R. (Principal Investigator)
8/01/14 → 31/12/19
Project: Research