Expression of glycosaminoglycan epitopes during zebrafish skeletogenesis

Anthony J Hayes, Ruth E Mitchell, Andrew Bashford, Scott Reynolds, Bruce Caterson, Chrissy L Hammond

Research output: Contribution to journalArticle (Academic Journal)

5 Citations (Scopus)

Abstract

Background: The zebrafish is an important developmental model. Surprisingly, there are few studies that describe the glycosaminoglycan composition of its extracellular matrix during skeletogenesis. Glycosaminoglycans on proteoglycans contribute to the material properties of musculo-skeletal connective tissues, and are important in regulating signalling events during morphogenesis. Sulfation motifs within the chain structure of glycosaminoglycans on cell-associated and extracellular matrix proteoglycans allow them to bind and regulate the sequestration/presentation of bioactive signalling molecules important in musculo-skeletal development. Results: We describe the spatio-temporal expression of different glycosaminoglycan moieties during zebrafish skeletogenesis with antibodies recognising (i) native sulfation motifs within chondroitin and keratan sulfate chains, and (ii) enzyme-generated neoepitope sequences within the chain structure of chondroitin sulfate (i.e. 0-, 4- and 6-sulfated isoforms) and heparan sulfate glycosaminoglycans. We show that all the glycosaminoglycan moieties investigated are expressed within the developing skeletal tissues of larval zebrafish. However, subtle changes in their patterns of spatio-temporal expression over the period examined, suggest that their expression is tightly and dynamically controlled during development. Conclusions: The subtle differences observed in the domains of expression between different glycosaminoglycan moieties suggest differences in their functional roles during establishment of the primitive analogues of the skeleton. Developmental Dynamics , 2013. © 2013 Wiley Periodicals,Inc.
Original languageEnglish
JournalDevelopmental Dynamics
DOIs
Publication statusPublished - 5 Apr 2013

Bibliographical note

©2013. Wiley Periodicals, Inc.

Fingerprint Dive into the research topics of 'Expression of glycosaminoglycan epitopes during zebrafish skeletogenesis'. Together they form a unique fingerprint.

Cite this