TY - JOUR
T1 - F-Divergences and Cost Function Locality in Generative Modelling with Quantum Circuits
AU - Leadbeater, Chiara
AU - Sharrock, Louis
AU - Coyle, Brian
AU - Benedetti, Marcello
PY - 2021/9/30
Y1 - 2021/9/30
N2 - Generative modelling is an important unsupervised task in machine learning. In this work, we study a hybrid quantum-classical approach to this task, based on the use of a quantum circuit born machine. In particular, we consider training a quantum circuit born machine using f-divergences. We first discuss the adversarial framework for generative modelling, which enables the estimation of any f-divergence in the near term. Based on this capability, we introduce two heuristics which demonstrably improve the training of the born machine. The first is based on f-divergence switching during training. The second introduces locality to the divergence, a strategy which has proved important in similar applications in terms of mitigating barren plateaus. Finally, we discuss the long-term implications of quantum devices for computing f-divergences, including algorithms which provide quadratic speedups to their estimation. In particular, we generalise existing algorithms for estimating the Kullback–Leibler divergence and the total variation distance to obtain a fault-tolerant quantum algorithm for estimating another f-divergence, namely, the Pearson divergence.
AB - Generative modelling is an important unsupervised task in machine learning. In this work, we study a hybrid quantum-classical approach to this task, based on the use of a quantum circuit born machine. In particular, we consider training a quantum circuit born machine using f-divergences. We first discuss the adversarial framework for generative modelling, which enables the estimation of any f-divergence in the near term. Based on this capability, we introduce two heuristics which demonstrably improve the training of the born machine. The first is based on f-divergence switching during training. The second introduces locality to the divergence, a strategy which has proved important in similar applications in terms of mitigating barren plateaus. Finally, we discuss the long-term implications of quantum devices for computing f-divergences, including algorithms which provide quadratic speedups to their estimation. In particular, we generalise existing algorithms for estimating the Kullback–Leibler divergence and the total variation distance to obtain a fault-tolerant quantum algorithm for estimating another f-divergence, namely, the Pearson divergence.
U2 - 10.3390/e23101281
DO - 10.3390/e23101281
M3 - Article (Academic Journal)
C2 - 34682005
SN - 1099-4300
VL - 23
JO - Entropy
JF - Entropy
IS - 10
ER -