Fault-Tolerant Connection of Error-Corrected Qubits with Noisy Links

Joshua Ramette, Josiah Sinclair, Nikolas P. Breuckmann, Vladan Vuletić

Research output: Working paperPreprint

12 Downloads (Pure)

Abstract

One of the most promising routes towards scalable quantum computing is a modular approach. We show that distinct surface code patches can be connected in a fault-tolerant manner even in the presence of substantial noise along their connecting interface. We quantify analytically and numerically the combined effect of errors across the interface and bulk. We show that the system can tolerate 14 times higher noise at the interface compared to the bulk, with only a small effect on the code's threshold and sub-threshold behavior, reaching threshold with $\sim 1 \%$ bulk errors and $\sim 10 \%$ interface errors. This implies that fault-tolerant scaling of error-corrected modular devices is within reach using existing technology.
Original languageEnglish
DOIs
Publication statusPublished - 2 Feb 2023

Keywords

  • quant-ph
  • math-ph
  • math.MP

Fingerprint

Dive into the research topics of 'Fault-Tolerant Connection of Error-Corrected Qubits with Noisy Links'. Together they form a unique fingerprint.

Cite this