Skip to content

Finite element modelling of Dyneema® composites: From quasi-static rates to ballistic impact

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)31-45
Number of pages15
JournalComposites Part A: Applied Science and Manufacturing
DateAccepted/In press - 4 Sep 2018
DatePublished (current) - 1 Dec 2018


A finite element methodology to predict the behaviour of Dyneema® HB26 fibre composites at quasi-static rates of deformation, under low velocity drop weight impact, and high velocity ballistic impact has been developed. A homogenised sub-laminate approach separated by cohesive tied contacts was employed. The modelling approach uses readily available material models within LS-DYNA, and is validated against experimental observations in literature. Plane-strain beam models provide accurate mechanisms of deformation, largely controlled through Mode II cohesive interface properties and kink band formation. Low velocity drop weight impact models of HB26 give force-deflection within 10% of new experimental observations, with in-plane shear strain contour plots from models directly compared with experimental Digital Image Correlation (DIC). Ballistic impact models utilising rate effects and damage showed similar modes of deformation and failure to that observed in literature, and provide a good approximation for ballistic limit under 600 m/s impact speed.

    Research areas

  • Dyneema®, Finite element analysis (FEA), Impact behaviour

Download statistics

No data available



  • Full-text PDF (accepted author manuscript)

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at . Please refer to any applicable terms of use of the publisher.

    Accepted author manuscript, 2.77 MB, PDF document

    Licence: CC BY-NC-ND



View research connections

Related faculties, schools or groups