First UHF Implementation of the Incremental Scheme for Open-Shell Systems

Tony Anacker, David P. Tew, Joachim Friedrich*

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

15 Citations (Scopus)

Abstract

The incremental scheme makes it possible to compute CCSD(T) correlation energies to high accuracy for large systems. We present the first extension of this fully automated black-box approach to open-shell systems using an Unrestricted Hartree-Fock (UHF) wave function, extending the efficient domain-specific basis set approach to handle open-shell references. We test our approach on a set of organic and metal organic structures and molecular clusters and demonstrate standard deviations from canonical CCSD(T) values of only 1.35 kJ/mol using a triple ζ basis set. We find that the incremental scheme is significantly more cost-effective than the canonical implementation even for relatively small systems and that the ease of parallelization makes it possible to perform high-level calculations on large systems in a few hours on inexpensive computers. We show that the approximations that make our approach widely applicable are significantly smaller than both the basis set incompleteness error and the intrinsic error of the CCSD(T) method, and we further demonstrate that incremental energies can be reliably used in extrapolation schemes to obtain near complete basis set limit CCSD(T) reaction energies for large systems.

Original languageEnglish
Pages (from-to)65-78
Number of pages14
JournalJournal of Chemical Theory and Computation
Volume12
Issue number1
DOIs
Publication statusPublished - 12 Jan 2016

Fingerprint

Dive into the research topics of 'First UHF Implementation of the Incremental Scheme for Open-Shell Systems'. Together they form a unique fingerprint.

Cite this