Fish and tetrapod communities across a marine to brackish salinity gradient in the Pennsylvanian (early Moscovian) Minto Formation of New Brunswick, Canada, and their palaeoecological and palaeogeographical implications

Aodhán Ó Gogáin, Howard J Falcon-Lang, David K Carpenter, Randall F. Miller, Mike J Benton, Peir K. Pufahl, Marcello Ruta, Thomas G. Davies, Steven J. Hinds, Matthew R. Stimson

Research output: Contribution to journalArticle (Academic Journal)peer-review

13 Citations (Scopus)
329 Downloads (Pure)

Abstract

Euryhaline adaptations in Pennsylvanian vertebrates allowed them to inhabit the marine to freshwater spectrum. This is illustrated by new assemblages of fish and tetrapods from the early Moscovian Minto Formation of New Brunswick, Canada. Fish include chondrichthyans (xenacanthids and the enigmatic Ageleodus), acanthodians (gyracanthids and acanthodiforms), sarcopterygians (rhizodontids, megalichthyids and dipnoans), and actinopterygians (eurynotiforms). Tetrapods include small- to medium-sized, and largely aquatic, stem tetrapods (colosteids) and anthracosaurs (embolomeres). A key finding is that the parautochthonous fossil assemblages are preserved across a salinity gradient, with diversity (measured by the Simpson Index) declining from open marine environments, through brackish embayments, and reaching a nadir in tidal estuaries. Chondrichthyans dominate the entire salinity spectrum (65% of fossils), a distribution that demonstrates a euryhaline mode of life, and one large predatory chondrichthyan, Orthacanthus, may have practised filial cannibalism in coastal nurseries because its heteropolar coprolites contain juvenile xenacanthid teeth. In contrast, other fish communities were more common in open marine settings while tetrapods were more common in coastal brackish waters. While all these faunas were also likely to have been euryhaline, their osmoregulation was, perhaps, less versatile. The demonstration of widespread euryhalinity among fish and aquatic tetrapods explains why Pennsylvanian faunas generally show a cosmopolitan biogeography because taxa were able to disperse via seaways. It also resolves the paradox of enriched strontium isotopic signatures observed in these faunas because organisms would have been, at times, exposed to continental water bodies as well. Therefore, our new findings contribute to the long-running debate about the ecology of Pennsylvanian fishes and tetrapods.

Original languageEnglish
Pages (from-to)689-724
Number of pages26
JournalPalaeontology
Volume59
Issue number5
Early online date11 Aug 2016
DOIs
Publication statusPublished - Sep 2016

Keywords

  • Cosmopolitan
  • Euryhaline
  • Fish communities
  • New Brunswick
  • Pennsylvanian
  • Salinity gradient

Fingerprint

Dive into the research topics of 'Fish and tetrapod communities across a marine to brackish salinity gradient in the Pennsylvanian (early Moscovian) Minto Formation of New Brunswick, Canada, and their palaeoecological and palaeogeographical implications'. Together they form a unique fingerprint.

Cite this