FleXert: a soft, actuatable multi-well plate insert for cell culture under stretch

Sara Correia Carreira*, Majid Taghavi, Elizabeth Pavez Loriè, Jonathan Rossiter

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

3 Citations (Scopus)
175 Downloads (Pure)

Abstract

Porous multi-well plate inserts are widely used in biomedical research to study transport processes or culture cells/tissues at the air-liquid interface. These inserts are made of rigid materials and are used under static culture conditions, which are unrepresentative of biological microenvironments. Here, we present FleXert, a soft, actuatable cell culture insert that interfaces with six-well plates. It is made of polydimethylsiloxane (PDMS) and comprises a porous PDMS membrane as cell/tissue support. FleXerts can be pneumatically actuated using a standard syringe pump, imparting tensile strains of up to 30 %. A wide range of actuation patterns can be achieved by varying air pressure and pumping rate. Facile surface functionalization of FleXert’s porous PDMS membrane with fibronectin enables adhesion of human dermal fibroblasts, and strains developing on FleXert’s membrane are successfully transduced to the cell layer. 3D tissue models, such as fibroblast-laden collagen gels, can also be anchored to PDMS following polydopamine coating. Furthermore, collagen coated FleXert membranes support the establishment of a human skin model, demonstrating the material’s excellent biocompatibility required for tissue engineering. In contrast to existing technologies, FleXerts do not require costly fabrication equipment or custombuilt culture chambers, making them a versatile and low-cost solution for tissue engineering and biological barrier penetration studies under physiological strain. This paper is an extensive toolkit for multi-disciplinary mechanobiology studies, including detailed instructions for a wide variety of methods such as device fabrication, theoretical modelling, cell culture, and image analysis techniques.
Original languageEnglish
Pages (from-to)2225-2245
Number of pages21
JournalACS Biomaterials Science and Engineering
Volume7
Issue number6
Early online date12 Apr 2021
DOIs
Publication statusPublished - 14 Jun 2021

Bibliographical note

Funding Information:
S.C.C. is supported by the University of Bristol Vice-Chancellor’s Fellowship scheme and some of this work was supported by EPSRC grant EP/S003258/1, M.T. is supported by EP/R02961 X/1. E.P..L is supported by the Bundesministerium für Bildung and Forschung through the KAUVIR grant. J.R. is supported by EPSRC grants EP/M020460/1, EP/S026096/1, EP/S021795/1, and EP/R02961 X/1 and by the Royal Academy of Engineering as Chair in Emerging Technologies.

Publisher Copyright:
© 2021 American Chemical Society.

Keywords

  • mechanical stimulation
  • soft actuator
  • tissue engineering
  • in vitro model
  • biointerface

Fingerprint

Dive into the research topics of 'FleXert: a soft, actuatable multi-well plate insert for cell culture under stretch'. Together they form a unique fingerprint.

Cite this