Frequentist analysis of the parameter space of minimal supergravity

Research output: Contribution to journalArticle (Academic Journal)peer-review

40 Citations (Scopus)

Abstract

We make a frequentist analysis of the parameter space of minimal supergravity (mSUGRA), in which, as well as the gaugino and scalar soft supersymmetry-breaking parameters being universal, there is a specific relation between the trilinear, bilinear and scalar supersymmetry-breaking parameters, A 0=B 0+m 0, and the gravitino mass is fixed by m 3/2=m 0. We also consider a more general model, in which the gravitino mass constraint is relaxed (the VCMSSM). We combine in the global likelihood function the experimental constraints from low-energy electroweak precision data, the anomalous magnetic moment of the muon, the lightest Higgs boson mass M h , B physics and the astrophysical cold dark matter density, assuming that the lightest supersymmetric particle (LSP) is a neutralino. In the VCMSSM, we find a preference for values of m 1/2 and m 0 similar to those found previously in frequentist analyses of the constrained MSSM (CMSSM) and a model with common non-universal Higgs masses (NUHM1). On the other hand, in mSUGRA we find two preferred regions: one with larger values of both m 1/2 and m 0 than in the VCMSSM, and one with large m 0 but small m 1/2. We compare the probabilities of the frequentist fits in mSUGRA, the VCMSSM, the CMSSM and the NUHM1: the probability that mSUGRA is consistent with the present data is significantly less than in the other models. We also discuss the mSUGRA and VCMSSM predictions for sparticle masses and other observables, identifying potential signatures at the LHC and elsewhere.
Translated title of the contributionFrequentist analysis of the parameter space of minimal supergravity
Original languageEnglish
Pages (from-to)1583 - 1595
Number of pages14
JournalEuropean Physical Journal C: Particles and Fields
Volume71
DOIs
Publication statusPublished - Mar 2011

Bibliographical note

Author of Publication Reviewed: O. Buchmueller et al
Publisher: Springer Verlag

Fingerprint Dive into the research topics of 'Frequentist analysis of the parameter space of minimal supergravity'. Together they form a unique fingerprint.

Cite this