Functional Heterogeneity in Superorganisms: Emerging Trends and Concepts

Thomas O'Shea-Wheller*, Edmund R Hunt, Takao Sasaki

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)

Abstract

Social insects are biological benchmarks of self-organization and decentralized control. Their integrated yet accessible nature makes them ideal models for the investigation of complex social network interactions, and the mehanisms that shape emergent group capabilities. Increasingly, inter-individual heterogeneity, and the functional role that it may play, is seen as an important facet of colonies’ social architecture. Insect superorganisms present powerful model systems for the elucidation of conserved trends in biology, through the strong and consistent analogies that they display with multicellular organisms. As such, research relating to the benefits and constraints of heterogeneity in behavior, morphology, phenotypic plasticity, and colony genotype, provides insight into the underpinnings of emergent collective phenomena, with rich potential for future exploration. Here, we review recent advances and trends in the understanding of functional heterogeneity within social insects. We highlight the scope for fundamental advances in biological knowledge, and the opportunity for emerging concepts to be verified and expanded upon, with the aid of bioinspired engineering in swarm robotics, and computational task allocation.
Original languageEnglish
JournalAnnals of the Entomological Society of America
Publication statusAccepted/In press - 29 Sep 2020

Fingerprint Dive into the research topics of 'Functional Heterogeneity in Superorganisms: Emerging Trends and Concepts'. Together they form a unique fingerprint.

Cite this