Abstract
GABAergic interneurons play key roles in cortical circuits, yet little is known about their early connectivity. Here we use glutamate uncaging and a novel optogenetic strategy to track changes in the afferent and efferent synaptic connections of developing neocortical interneuron subtypes. We find that Nkx2-1-derived interneurons possess functional synaptic connections before emerging pyramidal cell networks. Subsequent interneuron circuit maturation is both subtype and layer dependent. Glutamatergic input onto fast spiking (FS), but not somatostatin-positive, non-FS interneurons increases over development. Interneurons of both subtype located in layers (L) 4 and 5b engage in transient circuits that disappear after the somatosensory critical period. These include a pathway mediated by L5b somatostatin-positive interneurons that specifically targets L4 during the first postnatal week. The innervation patterns of immature cortical interneuron circuits are thus neither static nor progressively strengthened but follow a layer-specific choreography of transient connections that differ from those of the adult brain.
Original language | English |
---|---|
Article number | 10584 |
Journal | Nature Communications |
Volume | 7 |
DOIs | |
Publication status | Published - 4 Feb 2016 |
Fingerprint
Dive into the research topics of 'GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex.'. Together they form a unique fingerprint.Profiles
-
Dr Paul G Anastasiades
- Bristol Medical School (THS) - Senior Lecturer in Neuroscience
- Bristol Neuroscience
Person: Academic , Member