Generalised modal stability of inclined cables subjected to support excitations

Research output: Contribution to journalArticle (Academic Journal)peer-review

61 Citations (Scopus)

Abstract

Parametric excitation is of concern for cables such as on cable-stayed bridges, whereby small amplitude end motion can lead to large, potentially damaging, cable vibrations. Previous identification of the stability boundaries for the onset of such vibrations has considered only a single mode of the cable, ignoring non-linear coupling between modes, or has been limited to special cases. Here multiple cable modes in both planes are included, with support excitation close to any natural frequency. Cable inclination, sag, parametric and direct excitation and nonlinearities, including modal coupling, are included. The only significant limitation is that the sag is small. The method of scaling and averaging is used to find the steady-state amplitude of the directly excited mode and, in the presence of this response, to define stability boundaries of other modes excited parametrically or through nonlinear modal coupling. It is found that the directly excited response significantly modifies the stability boundaries compared to previous simplified solutions. The analysis is validated by a series of experimental tests, which also identified another nonlinear mechanism which caused significant cable vibrations at twice the excitation frequency in certain conditions. This new mechanism is explained through a refinement of the analysis.
Translated title of the contributionGeneralised modal stability of inclined cables subjected to support excitations
Original languageEnglish
Pages (from-to)4515 - 4533
Number of pages18
JournalJournal of Sound and Vibration
Volume329
Issue number21
DOIs
Publication statusPublished - Oct 2010

Fingerprint

Dive into the research topics of 'Generalised modal stability of inclined cables subjected to support excitations'. Together they form a unique fingerprint.

Cite this