Abstract
This paper presents a liquid-based device with fluid-induced damping, stiffness and inertia effects. The proposed concept is modelled and experimentally studied. A lumped parameter fluid dynamics approach is used to model the flow-induced energy dissipation, inertia and volumetric compressibility. It is shown that the developed 5-state nonlinear dynamic model can be modified to represent a range of previously established models. A reference set of model parameters is determined from the calibration data obtained from a novel device demonstrator. The model’s functional and parametric changes are shown to enable the device specializations which can approximate simpler as well as ideal devices such as dampers, springs and inerters. This work also demonstrates that the interaction between all three principal fluid effects opens routes to dynamic device tuning and frequency-selective damping.
Original language | English |
---|---|
Pages (from-to) | 4134-4145 |
Number of pages | 12 |
Journal | AIAA Journal |
Volume | 56 |
Issue number | 10 |
Early online date | 11 Sept 2018 |
DOIs | |
Publication status | Published - Oct 2018 |
Fingerprint
Dive into the research topics of 'Generalized Liquid-Based Damping Device for Passive Vibration Control'. Together they form a unique fingerprint.Profiles
-
Dr Branislav Titurus
- School of Civil, Aerospace and Design Engineering - Associate Professor of Aerospace Dynamics
- Dynamics and Control
Person: Academic , Member