Abstract
This paper proposes high-dimensional data mining technique by integrating two data mining methods: Accuracy-based Learning Classifier Systems (XCS) and Random Forests (RF). Concretely, the proposed system integrates RF and XCS: RF generates several numbers of decision trees, and XCS generalizes the rules converted from the decision trees. The convert manner is as follows: (1) the branch node of the decision tree becomes the attribute; (2) if the branch node does not exist, the attribute of that becomes # for XCS; and (3) One decision tree becomes one rule at least. Note that # can become any value in the attribute. From the experiments of Multiplexer problems, we derive that: (i) the good performance of the proposed system; and (ii) RF helps XCS to acquire optimal solutions as knowledge by generating appropriately generalized rules.
Original language | English |
---|---|
Title of host publication | GECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference Companion |
Publisher | Association for Computing Machinery (ACM) |
Pages | 1465-1472 |
Number of pages | 8 |
ISBN (Electronic) | 9781450357647 |
DOIs | |
Publication status | Published - 6 Jul 2018 |
Event | 2018 Genetic and Evolutionary Computation Conference, GECCO 2018 - Kyoto, Japan Duration: 15 Jul 2018 → 19 Jul 2018 |
Conference
Conference | 2018 Genetic and Evolutionary Computation Conference, GECCO 2018 |
---|---|
Country/Territory | Japan |
City | Kyoto |
Period | 15/07/18 → 19/07/18 |
Keywords
- Accuracy-based Learning Classifier System
- Data mining
- High-dimensional data
- Random Forest