Skip to content

Generation of arc rhyodacites through cumulate-melt reactions in a deep crustal hot zone: Evidence from Nisyros volcano

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)169-180
Number of pages12
JournalEarth and Planetary Science Letters
Volume497
Early online date26 Jun 2018
DOIs
DateAccepted/In press - 13 Jun 2018
DateE-pub ahead of print - 26 Jun 2018
DatePublished (current) - 1 Sep 2018

Abstract

The generation of continental crust of intermediate composition occurs predominantly in convergent margin settings, yet the mechanisms by which felsic, calc-alkaline arc magmas are generated remain poorly understood. Magma mixing appears to be a common process in voluminous intermediate arc rocks but the composition of the felsic mixing endmember is typically obscured by the mixing process. We investigate a suite of porphyritic (rhyo)dacitic magmas (65–72 wt.% SiO2) from Nisyros, a young stratovolcano in the Aegean arc, Greece. These magmas are not affected by shallow process such as hybridisation or crystal-melt segregation and thus offer a valuable insight into the origin of felsic melts at convergent margins. We find that the Nisyros (rhyo)dacites form through a reaction in which earlier-formed wehrlite cumulates in the deep arc crust react with melts to form amphibole. This implies that melt major element compositions are effectively buffered by a low-variance mineral assemblage to follow this peritectic boundary such that the silica content of melts extracted from the deep crustal hot zone is controlled by the amount of amphibole crystallised. The resorption of cumulates is pivotal in imparting a distinct trace element signature that is decoupled from major element systematics. For example, high compatible element contents and a strong amphibole signature (low Y and Dy/Yb) cannot be captured by simple crystallisation models and require cumulate resorption. Variable radiogenic isotope systematics indicate minor crustal contamination although assimilation is not proportional to silica content and hence not a main driving force behind the generation of felsic melts. Instead, the Nisyros (rhyo)dacites formed through melt-cumulate reaction processes prior to emplacement as mush bodies at shallow depth and partial eruption. Magma mixing only becomes an important process in the youngest unit on Nisyros. On a global scale, peritectic boundary melts are rarely sampled in the whole rock or melt inclusion record. Conversely, peritectic boundary melts do form a suitable felsic mixing endmember for the generation of voluminous “monotonous intermediate” magmas.

    Research areas

  • magma differentiation, calc-alkaline (rhyo)dacites, amphibole, melt-cumulate reaction, Nisyros, Aegean arc

Download statistics

No data available

Documents

Documents

  • Full-text PDF (accepted author manuscript)

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via ELSEVIER at https://www.sciencedirect.com/science/article/pii/S0012821X18303583?via%3Dihub . Please refer to any applicable terms of use of the publisher.

    Accepted author manuscript, 340 KB, PDF document

DOI

View research connections

Related faculties, schools or groups