Genetic drift from the out-of-Africa bottleneck leads to biased estimation of genetic architecture and selection

Bilal H Ashraf, Daniel John Lawson*

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

5 Citations (Scopus)
117 Downloads (Pure)

Abstract

Most complex traits evolved in the ancestors of all modern humans and have been under negative or balancing selection to maintain the distribution of phenotypes observed today. Yet all large studies mapping genomes to complex traits occur in populations that have experienced the Out-of-Africa bottleneck. Does this bottleneck affect the way we characterise complex traits? We demonstrate using the 1000 Genomes dataset and hypothetical complex traits that genetic drift can strongly affect the joint distribution of effect size and SNP frequency, and that the bias can be positive or negative depending on subtle details. Characterisations that rely on this distribution therefore conflate genetic drift and selection. We provide a model to identify the underlying selection parameter in the presence of drift, and demonstrate that a simple sensitivity analysis may be enough to validate existing characterisations. We conclude that biobanks characterising more worldwide diversity would benefit studies of complex traits.
Original languageEnglish
Number of pages8
JournalEuropean Journal of Human Genetics
Volume29
Issue number10
Early online date13 Apr 2021
DOIs
Publication statusPublished - Oct 2021

Fingerprint

Dive into the research topics of 'Genetic drift from the out-of-Africa bottleneck leads to biased estimation of genetic architecture and selection'. Together they form a unique fingerprint.

Cite this