Abstract
Objectives. Glass ionomer cements (GICs) are a versatile material, offering the opportunity for ion exchange with the oral environment. The aim of this study was to develop a GIC that delivers a controlled, rechargeable dose of chlorhexidine (CHX) over an extended period without compromising mechanical properties.
Methods. GICs were supplemented with finely milled particles of chlorhexidine hexametaphosphate (CHX-HMP). CHX release into artificial saliva was measured over 660 days, and recharge with CHX and CHX-HMP was investigated. Mechanical properties were investigated, and an agar diffusion test was carried out to assess antimicrobial properties using Streptococcus mutans and Scardovia wiggsiae.
Results. Dose-dependent CHX release was observed, and this was ongoing at 660 days. Compared with related studies of GICs containing CHX-HMP, the fine, dry particles resulted in fewer adverse effects on mechanical properties, including tensile, compressive and biaxial flexural strength, with 1% CHX-HMP GICs indistinguishable from control specimens. The GICs could be recharged with CHX using both a conventional CHX digluconate solution comparable to commercial mouthrinses, and a suspension of CHX-HMP of equivalent concentration. Recharging with CHX digluconate increased subsequent CHX release by 50% compared with no recharge, and recharging with CHX-HMP increased subsequent CHX release by 100% compared with no recharge. The GICs inhibited growth of St. mutans and Sc. wiggsiae in a simple agar diffusion model.
Significance. These materials, which provide sustained CHX release over clinically relevant timescales, may find application as a restorative material intended to inhibit secondary caries as well as in temporary restorations and fissure sealants.
Methods. GICs were supplemented with finely milled particles of chlorhexidine hexametaphosphate (CHX-HMP). CHX release into artificial saliva was measured over 660 days, and recharge with CHX and CHX-HMP was investigated. Mechanical properties were investigated, and an agar diffusion test was carried out to assess antimicrobial properties using Streptococcus mutans and Scardovia wiggsiae.
Results. Dose-dependent CHX release was observed, and this was ongoing at 660 days. Compared with related studies of GICs containing CHX-HMP, the fine, dry particles resulted in fewer adverse effects on mechanical properties, including tensile, compressive and biaxial flexural strength, with 1% CHX-HMP GICs indistinguishable from control specimens. The GICs could be recharged with CHX using both a conventional CHX digluconate solution comparable to commercial mouthrinses, and a suspension of CHX-HMP of equivalent concentration. Recharging with CHX digluconate increased subsequent CHX release by 50% compared with no recharge, and recharging with CHX-HMP increased subsequent CHX release by 100% compared with no recharge. The GICs inhibited growth of St. mutans and Sc. wiggsiae in a simple agar diffusion model.
Significance. These materials, which provide sustained CHX release over clinically relevant timescales, may find application as a restorative material intended to inhibit secondary caries as well as in temporary restorations and fissure sealants.
Original language | English |
---|---|
Number of pages | 10 |
Journal | Dental Materials |
Early online date | 21 Sept 2018 |
DOIs | |
Publication status | E-pub ahead of print - 21 Sept 2018 |
Keywords
- Antimicrobials
- Caries
- Chlorhexidine
- Glass ionomer cement
- Restorative materials
Fingerprint
Dive into the research topics of 'Glass ionomer cements with milled, dry chlorhexidine hexametaphosphate filler particles to provide long-term antimicrobial properties with recharge capacity'. Together they form a unique fingerprint.Profiles
-
Professor Michele E Barbour
- Senior Team - Associate Pro Vice-Chancellor (Enterprise & Innovation)
- Bristol Dental School - Professor of Biomaterials
- Infection and Immunity
Person: Academic , Member