TY - JOUR
T1 - Global ocean conveyor lowers extinction risk in the deep sea
AU - Henry, Lea Anne
AU - Frank, Norbert
AU - Hebbeln, Dierk
AU - Wienberg, Claudia
AU - Robinson, Laura
AU - de Flierdt, Tina van
AU - Dahl, Mikael
AU - Douarin, Mélanie
AU - Morrison, Cheryl L.
AU - Correa, Matthias López
AU - Rogers, Alex D.
AU - Ruckelshausen, Mario
AU - Roberts, J. Murray
PY - 2014/1/1
Y1 - 2014/1/1
N2 - General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth[U+05F3]s largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium-thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6. kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500. km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.
AB - General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth[U+05F3]s largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium-thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6. kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500. km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.
KW - Atlantic meridional overturning circulation
KW - Climate change
KW - Connectivity
KW - Deep sea
KW - Extinction
KW - Larval dispersal
UR - http://www.scopus.com/inward/record.url?scp=84898883179&partnerID=8YFLogxK
U2 - 10.1016/j.dsr.2014.03.004
DO - 10.1016/j.dsr.2014.03.004
M3 - Article (Academic Journal)
AN - SCOPUS:84898883179
SN - 0967-0637
VL - 88
SP - 8
EP - 16
JO - Deep-Sea Research Part I: Oceanographic Research Papers
JF - Deep-Sea Research Part I: Oceanographic Research Papers
IS - 1
ER -