Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition

Christopher J L Murray, Ryan M Barber, Kyle J Foreman, Ayse Abbasoglu Ozgoren, Foad Abd-Allah, Semaw F Abera, Victor Aboyans, Jerry P Abraham, Ibrahim Abubakar, Laith J Abu-Raddad, Niveen M Abu-Rmeileh, Tom Achoki, Ilana N Ackerman, Zanfina Ademi, Arsène K Adou, José C Adsuar, Ashkan Afshin, Emilie E Agardh, Sayed Saidul Alam, Deena AlasfoorMohammed I Albittar, Miguel A Alegretti, Zewdie A Alemu, Rafael Alfonso-Cristancho, Samia Alhabib, Raghib Ali, François Alla, Peter Allebeck, Mohammad A Almazroa, Ubai Alsharif, Elena Alvarez, Nelson Alvis-Guzman, Azmeraw T Amare, Emmanuel A Ameh, Heresh Amini, Walid Ammar, H Ross Anderson, Benjamin O Anderson, Carl Abelardo T Antonio, Adam D Briggs, Jonathan C Brown, David O Carpenter, Katharine J Looker, Neil Pearce, Michael R Phillips, David E Phillips, James G Scott, Thomas N Williams, Anthony D Woolf, GBD 2013 DALYs and HALE Collaborators

Research output: Contribution to journalArticle (Academic Journal)peer-review

1539 Citations (Scopus)

Abstract

BACKGROUND: The Global Burden of Disease Study 2013 (GBD 2013) aims to bring together all available epidemiological data using a coherent measurement framework, standardised estimation methods, and transparent data sources to enable comparisons of health loss over time and across causes, age-sex groups, and countries. The GBD can be used to generate summary measures such as disability-adjusted life-years (DALYs) and healthy life expectancy (HALE) that make possible comparative assessments of broad epidemiological patterns across countries and time. These summary measures can also be used to quantify the component of variation in epidemiology that is related to sociodemographic development.

METHODS: We used the published GBD 2013 data for age-specific mortality, years of life lost due to premature mortality (YLLs), and years lived with disability (YLDs) to calculate DALYs and HALE for 1990, 1995, 2000, 2005, 2010, and 2013 for 188 countries. We calculated HALE using the Sullivan method; 95% uncertainty intervals (UIs) represent uncertainty in age-specific death rates and YLDs per person for each country, age, sex, and year. We estimated DALYs for 306 causes for each country as the sum of YLLs and YLDs; 95% UIs represent uncertainty in YLL and YLD rates. We quantified patterns of the epidemiological transition with a composite indicator of sociodemographic status, which we constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population. We applied hierarchical regression to DALY rates by cause across countries to decompose variance related to the sociodemographic status variable, country, and time.

FINDINGS: Worldwide, from 1990 to 2013, life expectancy at birth rose by 6·2 years (95% UI 5·6-6·6), from 65·3 years (65·0-65·6) in 1990 to 71·5 years (71·0-71·9) in 2013, HALE at birth rose by 5·4 years (4·9-5·8), from 56·9 years (54·5-59·1) to 62·3 years (59·7-64·8), total DALYs fell by 3·6% (0·3-7·4), and age-standardised DALY rates per 100 000 people fell by 26·7% (24·6-29·1). For communicable, maternal, neonatal, and nutritional disorders, global DALY numbers, crude rates, and age-standardised rates have all declined between 1990 and 2013, whereas for non-communicable diseases, global DALYs have been increasing, DALY rates have remained nearly constant, and age-standardised DALY rates declined during the same period. From 2005 to 2013, the number of DALYs increased for most specific non-communicable diseases, including cardiovascular diseases and neoplasms, in addition to dengue, food-borne trematodes, and leishmaniasis; DALYs decreased for nearly all other causes. By 2013, the five leading causes of DALYs were ischaemic heart disease, lower respiratory infections, cerebrovascular disease, low back and neck pain, and road injuries. Sociodemographic status explained more than 50% of the variance between countries and over time for diarrhoea, lower respiratory infections, and other common infectious diseases; maternal disorders; neonatal disorders; nutritional deficiencies; other communicable, maternal, neonatal, and nutritional diseases; musculoskeletal disorders; and other non-communicable diseases. However, sociodemographic status explained less than 10% of the variance in DALY rates for cardiovascular diseases; chronic respiratory diseases; cirrhosis; diabetes, urogenital, blood, and endocrine diseases; unintentional injuries; and self-harm and interpersonal violence. Predictably, increased sociodemographic status was associated with a shift in burden from YLLs to YLDs, driven by declines in YLLs and increases in YLDs from musculoskeletal disorders, neurological disorders, and mental and substance use disorders. In most country-specific estimates, the increase in life expectancy was greater than that in HALE. Leading causes of DALYs are highly variable across countries.

INTERPRETATION: Global health is improving. Population growth and ageing have driven up numbers of DALYs, but crude rates have remained relatively constant, showing that progress in health does not mean fewer demands on health systems. The notion of an epidemiological transition-in which increasing sociodemographic status brings structured change in disease burden-is useful, but there is tremendous variation in burden of disease that is not associated with sociodemographic status. This further underscores the need for country-specific assessments of DALYs and HALE to appropriately inform health policy decisions and attendant actions.

FUNDING: Bill & Melinda Gates Foundation.

Original languageEnglish
JournalLancet
DOIs
Publication statusPublished - 27 Aug 2015

Fingerprint

Dive into the research topics of 'Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition'. Together they form a unique fingerprint.

Cite this