GMM-based efficient foreground detection with adaptive region update

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

14 Citations (Scopus)

Abstract

The accurate detection of moving objects is an important step in the process of tracking and recognition in many real-time video surveillance applications. In this paper, we propose a combination of block-based detection and a pixel-based Gaussian mixture model (GMM) for moving object detection. Compared with traditional pixel-based algorithms which update all pixels for every frame, our algorithm has the ability to selectively update region information within each frame, while offering the capability to refine the silhouette of a foreground object. The algorithm offers an efficient trade-off between complexity and detection performance. The results show improved detection in the presence of high camera noise, high level compression artefacts, camera movements and dynamic background conditions.
Translated title of the contributionGMM-based efficient foreground detection with adaptive region update
Original languageEnglish
Title of host publication16th IEEE International Conference on Image Processing (ICIP 2009), Cairo, Egypt
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages3181 - 3184
Number of pages4
ISBN (Print)9781424456536
DOIs
Publication statusPublished - 7 Nov 2009

Fingerprint Dive into the research topics of 'GMM-based efficient foreground detection with adaptive region update'. Together they form a unique fingerprint.

  • Cite this

    Li, H., Achim, AM., & Bull, DR. (2009). GMM-based efficient foreground detection with adaptive region update. In 16th IEEE International Conference on Image Processing (ICIP 2009), Cairo, Egypt (pp. 3181 - 3184). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ICIP.2009.5414398