Abstract
We consider the problem of nonadaptive noiseless group testing of N items of which K are defective. We describe four detection algorithms, the COMP algorithm of Chan et al., two new algorithms, DD and SCOMP, which require stronger evidence to declare an item defective, and an essentially optimal but computationally difficult algorithm called SSS. We consider an important class of designs for the group testing problem, namely those in which the test structure is given via a Bernoulli random process. In this class of Bernoulli designs, by considering the asymptotic rate of these algorithms, we show that DD outperforms COMP, that DD is essentially optimal in regimes where K ≥ √N, and that no algorithm can perform as well as the best nonrandom adaptive algorithms when K > N^0.35. In simulations, we see that DD and SCOMP far outperform COMP, with SCOMP very close to the optimal SSS, especially in cases with larger K.
Original language  English 

Pages (fromto)  3671  3687 
Journal  IEEE Transactions on Information Theory 
Volume  60 
Issue number  6 
DOIs  
Publication status  Published  Jun 2014 
Fingerprint Dive into the research topics of 'Group testing algorithms: bounds and simulations'. Together they form a unique fingerprint.
Profiles

Professor Oliver T Johnson
 School of Mathematics  Professor of Information Theory
 Statistical Science
 Probability, Analysis and Dynamics
 Probability
Person: Academic , Academic , Member