TY - JOUR
T1 - 'Hi-Fi AFM'
T2 - high-speed contact mode atomic force microscopy with optical pickups
AU - Russell-Pavier, Freddie
AU - Picco, Loren
AU - Payton, Oliver
AU - Day, John
AU - Shatil, Namid
AU - Yacoot, Andrew
PY - 2018/8/1
Y1 - 2018/8/1
N2 - High-speed atomic force microscopy (HS-AFM) is a powerful emerging technique used to gain insight into real-time nanoscale dynamics and phenomena across the sciences. By performing measurements of material properties, abundancy counting and dimensional analysis, it enables a new generation of discoveries at the atomic scale. Here, we demonstrate the use of an optical pickup unit (OPU) typically found in PCs, Hi-Fis and games consoles worldwide, as a vertical detection system within in a HS-AFM operated in contact mode. The OPU displacement performance is compared to that of a commercially available laser Doppler vibrometer with ±15 pm resolution. Sub-nanometre sensitivity is achieved with an OPU, presented via the identification of two resonant modes of a cantilever stimulated by ambient thermal excitation. To demonstrate the large dynamic range of the sensor at fast scan-speeds, surface profiles with step heights in excess of 100 nm and surface textures less than 10 nm were collected using a custom OPU based HS-AFM. The high fidelity measurements are extended to visible length scales in short timescales by imaging areas of up to 200 µm2 area at a pixel rate of 2 megapixels/s, tip velocity of 10 mm/s and area rate of 25 µm2/s.
AB - High-speed atomic force microscopy (HS-AFM) is a powerful emerging technique used to gain insight into real-time nanoscale dynamics and phenomena across the sciences. By performing measurements of material properties, abundancy counting and dimensional analysis, it enables a new generation of discoveries at the atomic scale. Here, we demonstrate the use of an optical pickup unit (OPU) typically found in PCs, Hi-Fis and games consoles worldwide, as a vertical detection system within in a HS-AFM operated in contact mode. The OPU displacement performance is compared to that of a commercially available laser Doppler vibrometer with ±15 pm resolution. Sub-nanometre sensitivity is achieved with an OPU, presented via the identification of two resonant modes of a cantilever stimulated by ambient thermal excitation. To demonstrate the large dynamic range of the sensor at fast scan-speeds, surface profiles with step heights in excess of 100 nm and surface textures less than 10 nm were collected using a custom OPU based HS-AFM. The high fidelity measurements are extended to visible length scales in short timescales by imaging areas of up to 200 µm2 area at a pixel rate of 2 megapixels/s, tip velocity of 10 mm/s and area rate of 25 µm2/s.
U2 - 10.1088/1361-6501/aad771
DO - 10.1088/1361-6501/aad771
M3 - Article (Academic Journal)
SN - 0957-0233
JO - Measurement Science and Technology
JF - Measurement Science and Technology
ER -