TY - GEN
T1 - Hidden Presence: Sensing Occupancy and Extracting Value from Occupancy Data
AU - Suzuki, Larissa
AU - Cooper, Peter
AU - Tryfonas, Theo
AU - Oikonomou, George
PY - 2015
Y1 - 2015
N2 - In this paper we review various technical architectures for sensing occupancy in commercial real estate spaces and discuss the potential benefits of applications that could be built upon the collected data. The technical capabilities reviewed range from simple presence detection to identifying individual workers and relating those semantically to jobs, teams, processes or other elements of the business. The volume and richness of accumulated data varies accordingly allowing the development of a range of occupancy monitoring applications that could bring multiple benefits to an organization. We find that overall occupancy-based applications are underappreciated in the Smart Buildings mantra due to occupancy’s inability to align to traditional building engineering silos, a lack of common view between stakeholders with respect to what is ‘value’ and the current client assessment tendencies which use predominantly demonstrator-based logic rather than a combination of practical demonstrators and theoretical value. We demonstrate that in commercial office buildings, occupancy-based Smart Building concepts have the potential to deliver benefits that can be orders of magnitude greater than current practice associated with silos such as energy and lighting. The directness of value in these is far more variable however, and the barriers and enablers to its realization are non-trivial. We identify and discuss these factors (including privacy, perceived additional capital expenditure, retrofitting requirements etc.) in more detail and relate them to stages of design and delivery of the built environment. We conclude that, on the presumption costs of development and implementation are relatively similar, the value streams of occupancy-based systems, while requiring more careful and bespoke design in the short term, could produce greater lifetime value in commercial office scenarios than leading smart building technologies.
AB - In this paper we review various technical architectures for sensing occupancy in commercial real estate spaces and discuss the potential benefits of applications that could be built upon the collected data. The technical capabilities reviewed range from simple presence detection to identifying individual workers and relating those semantically to jobs, teams, processes or other elements of the business. The volume and richness of accumulated data varies accordingly allowing the development of a range of occupancy monitoring applications that could bring multiple benefits to an organization. We find that overall occupancy-based applications are underappreciated in the Smart Buildings mantra due to occupancy’s inability to align to traditional building engineering silos, a lack of common view between stakeholders with respect to what is ‘value’ and the current client assessment tendencies which use predominantly demonstrator-based logic rather than a combination of practical demonstrators and theoretical value. We demonstrate that in commercial office buildings, occupancy-based Smart Building concepts have the potential to deliver benefits that can be orders of magnitude greater than current practice associated with silos such as energy and lighting. The directness of value in these is far more variable however, and the barriers and enablers to its realization are non-trivial. We identify and discuss these factors (including privacy, perceived additional capital expenditure, retrofitting requirements etc.) in more detail and relate them to stages of design and delivery of the built environment. We conclude that, on the presumption costs of development and implementation are relatively similar, the value streams of occupancy-based systems, while requiring more careful and bespoke design in the short term, could produce greater lifetime value in commercial office scenarios than leading smart building technologies.
KW - Smart built environments
KW - Occupancy detection
U2 - 10.1007/978-3-319-20889-3_39
DO - 10.1007/978-3-319-20889-3_39
M3 - Conference Contribution (Conference Proceeding)
T3 - Lecture Notes in Computer Science
SP - 412
EP - 424
BT - Design, User Experience, and Usability: Interactive Experience Design (DUXU)
PB - Springer International Publishing AG
T2 - HCI International 2015
Y2 - 2 August 2015 through 7 August 2015
ER -