Hierarchical Self-Assembly and Optical Disassembly for Controlled Switching of Magnetoferritin Nanoparticle Magnetism

MA Kostiainen, P Ceci, OI Kasyutich, M Fornara, P Hiekkataipale, RJM Nolte, JJM Cornelissen, RD Desaultes, Lierop J van

Research output: Contribution to journalArticle (Academic Journal)peer-review

75 Citations (Scopus)

Abstract

Protein cages such as ferritin and viral capsids are interesting building blocks for nanotechnology due to their monodisperse structure and ability to encapsulate various functional moieties. Here we show that recombinant ferritin protein cages encapsulating Fe3O4-gamma-Fe2O3 iron oxide (magnetoferritin) nanoparticles and photodegradable Newkome-type dendrons self-assemble Into micrometer-sized complexes with a face-centered-cubic (fcc) superstructure and a lattice constant of 13.1 nm. The magnetic properties of the magnetoferritin particles are affected directly by the hierarchical organization. Magnetoferritin nanoparticles dispersed in water exhibit typical. magnetism of single domain noninteracting nanoparticles; however, the same nanoparticles organized into fcc superstructures show clearly the effects of the altered magnetostatic (e.g., dipole-dipole) interactions by exhibiting, for example, different hysteresis of the field-dependent magnetization. The magnetoferritin-dendron assemblies can be efficiently disassembled by a short optical stimulus resulting In release of free magnetoferritin particles. After the triggered release the nanomagnetic properties of the pristine magnetoferritin nanoparticles are regained.
Translated title of the contributionHierarchical Self-Assembly and Optical Disassembly for Controlled Switching of Magnetoferritin Nanoparticle Magnetism
Original languageEnglish
Pages (from-to)6394 - 6402
JournalACS Nano
Volume5
DOIs
Publication statusPublished - Aug 2011

Bibliographical note

Author of Publication Reviewed: Kostiainen M., Ceci P., Fornara M., Hiekkataipale P., Kasyutich O., Nolte RJM, Cornelissen JJLM, Desautels RD, van Lirop J

Fingerprint

Dive into the research topics of 'Hierarchical Self-Assembly and Optical Disassembly for Controlled Switching of Magnetoferritin Nanoparticle Magnetism'. Together they form a unique fingerprint.

Cite this