High-fidelity aerodynamic shape optimization of modern transport wing using efficient hierarchical parameterization

AM Morris, CB Allen, TCS Rendall

Research output: Contribution to journalArticle (Academic Journal)peer-review

19 Citations (Scopus)

Abstract

Aerodynamic shape optimization technology is presented, using an efficient domain element parameterization approach. This provides a method that allows geometries to be parameterized at various levels, ranging from gross three-dimensional planform alterations to detailed local surface changes. Design parameters control the domain element point locations and, through efficient global interpolation functions, deform both the surface geometry and corresponding computational fluid dynamics volume mesh, in a fast, high quality, and robust fashion. This results in total independence from the mesh type (structured or unstructured), and optimization independence from the flow-solver is achieved by obtaining gradient information for an advanced gradient-based optimizer by finite-differences. Hence, the optimization tool can be used in conjunction with any flow-solver and/or mesh generator. Results have been presented recently for two-dimensional aerofoil cases, and shown impressive results; drag reductions of up to 45% were demonstrated using only 22 active design parameters. This paper presents the extension of these methods to three dimensions, with results for highly constrained optimization of a modern aircraft wing in transonic cruise. The optimization uses combined global and local parameters, giving 388 design variables, and produces a shock-free geometry with an 18% reduction in drag, with the added advantage of significantly reduced root moments.
Translated title of the contributionHigh-fidelity aerodynamic shape optimization of modern transport wing using efficient hierarchical parameterization
Original languageEnglish
Pages (from-to)297 - 312
Number of pages16
JournalInternational Journal for Numerical Methods in Fluids
Volume63
DOIs
Publication statusPublished - May 2010

Bibliographical note

Publisher: Wiley

Fingerprint Dive into the research topics of 'High-fidelity aerodynamic shape optimization of modern transport wing using efficient hierarchical parameterization'. Together they form a unique fingerprint.

Cite this