High-Pressure Transformation of SiO2 Glass from a Tetrahedral to an Octahedral Network: A Joint Approach Using Neutron Diffraction and Molecular Dynamics

Anita Zeidler, Kamil Wezka, Ruth Rowlands, Dean A. J. Whittaker, Philip S. Salmon, Annalisa Polidori, James W E Drewitt, Stefan Klotz, Henry E. Fischer, Martin C. Wilding, Craig L. Bull, Matthew G. Tucker, Mark Wilson

Research output: Contribution to journalArticle (Academic Journal)peer-review

67 Citations (Scopus)

Abstract

A combination of in situ high-pressure neutron diffraction at pressures up to 17.5(5) GPa and molecular dynamics simulations employing a many-body interatomic potential model is used to investigate the structure of cold-compressed silica glass. The simulations give a good account of the neutron diffraction results and of existing x-ray diffraction results at pressures up to ∼60  GPa. On the basis of the molecular dynamics results, an atomistic model for densification is proposed in which rings are “zipped” by a pairing of five- and/or sixfold coordinated Si sites. The model gives an accurate description for the dependence of the mean primitive ring size ⟨n⟩ on the mean Si-O coordination number, thereby linking a parameter that is sensitive to ordering on multiple length scales to a readily measurable parameter that describes the local coordination environment.
Original languageEnglish
Pages (from-to)135501
JournalPhysical Review Letters
Volume113
DOIs
Publication statusPublished - 23 Sep 2014

Fingerprint Dive into the research topics of 'High-Pressure Transformation of SiO2 Glass from a Tetrahedral to an Octahedral Network: A Joint Approach Using Neutron Diffraction and Molecular Dynamics'. Together they form a unique fingerprint.

Cite this