High Spatial Resolution Galactic 3D Extinction Mapping with IPHAS

Stuart E. Sale*, J. E. Drew, Y. C. Unruh, M. J. Irwin, C. Knigge, S. Phillipps, A. A. Zijlstra, B. T. GAnsicke, R. Greimel, P. J. Groot, A. Mampaso, R. A. H. Morris, R. Napiwotzki, D. Steeghs, N. A. Walton

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)

54 Citations (Scopus)

Abstract

We present an algorithm ({\scshape mead}, for `Mapping Extinction Against Distance') which will determine intrinsic ($r' - i'$) colour, extinction, and distance for early-A to K4 stars extracted from the IPHAS $r'/i'/\Halpha$ photometric database. These data can be binned up to map extinction in three dimensions across the northern Galactic Plane. The large size of the IPHAS database ($\sim 200$ million unique objects), the accuracy of the digital photometry it contains and its faint limiting magnitude ($r' \sim 20$) allow extinction to be mapped with fine angular ($ \sim 10 $ arcmin) and distance ($\sim 0.1$ ~kpc) resolution to distances of up to 10 kpc, outside the Solar Circle. High reddening within the Solar Circle on occasion brings this range down to $\sim 2$ kpc. The resolution achieved, both in angle and depth, greatly exceeds that of previous empirical 3D extinction maps, enabling the structure of the Galactic Plane to be studied in increased detail. {\scshape mead} accounts for the effect of the survey magnitude limits, photometric errors, unresolved ISM substructure, and binarity. The impact of metallicity variations, within the range typical of the Galactic disc is small. The accuracy and reliability of {\scshape mead} are tested through the use of simulated photometry created with Monte-Carlo sampling techniques. The success of this algorithm is demonstrated on a selection of fields and the results are compared to the literature.
Original languageEnglish
Pages (from-to)497-513
Number of pages17
JournalMonthly Notices of the Royal Astronomical Society
Volume392
Issue number2
DOIs
Publication statusPublished - 11 Jan 2009

Bibliographical note

18 pages, 25 figures, Accepted for publication in MNRAS, A version with high-resolution images is available at http://astro.ic.ac.uk/~ssale/extnmap.pdf

Keywords

  • methods: miscellaneous
  • surveys
  • stars: general
  • dust, extinction
  • ISM: structure
  • Galaxy: disc
  • OLD OPEN CLUSTERS
  • FORNAX SPECTROSCOPIC SURVEY
  • INITIAL MASS FUNCTION
  • MILKY-WAY TOMOGRAPHY
  • H-ALPHA SURVEY
  • INTERSTELLAR EXTINCTION
  • SOLAR NEIGHBORHOOD
  • MODEL ATMOSPHERES
  • CHEMICAL EVOLUTION
  • REDDENING MATERIAL

Fingerprint Dive into the research topics of 'High Spatial Resolution Galactic 3D Extinction Mapping with IPHAS'. Together they form a unique fingerprint.

  • Cite this

    Sale, S. E., Drew, J. E., Unruh, Y. C., Irwin, M. J., Knigge, C., Phillipps, S., Zijlstra, A. A., GAnsicke, B. T., Greimel, R., Groot, P. J., Mampaso, A., Morris, R. A. H., Napiwotzki, R., Steeghs, D., & Walton, N. A. (2009). High Spatial Resolution Galactic 3D Extinction Mapping with IPHAS. Monthly Notices of the Royal Astronomical Society, 392(2), 497-513. https://doi.org/10.1111/j.1365-2966.2008.14083.x