Highly efficient photocatalytic oxidative desulfurization of dibenzothiophene with sunlight irradiation using green catalyst of Ag@AgBr/Al-SBA-15 derived from natural halloysite

Xuan Nui Pham*, Ba Manh Nguyen, Ha Son Ngo, Huan V Doan*

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

Abstract

In recent decades, highly efficient deep desulfurization processes have become very necessary to decrease environmental pollution due to sulfur emissions from fuels. Herein, an enhanced photocatalytic desulfurization of a model fuel was investigated under sunlight irradiation using H2O2 as the oxidant and Ag@AgBr loaded mesoporous silica Al-SBA-15 as a catalyst. In this study, the photocatalyst (Ag@AgBr/Al-SBA-15) was synthesized via a chemical deposition using halloysite clay as the silica-aluminum source and characterized by X-ray diffraction (XRD), N2 adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The UV-Vis DRS results revealed that the light absorption expanded to the visible region (λ > 400 nm) for the various Ag@AgBr nanoparticles doped in the mesoporous Al-SBA-15 material. The 30% Ag@AgBr/Al-SBA-15 sample with a 30% Ag@AgBr doping exhibited enhanced photocatalytic activity and showed high stability even after four successive cycles. The results demonstrated that initial dibenzothiophene (DBT) concentrations (500 ppm) reached 98.66% removal with 50 mg of the catalyst dosage, 1.0 mL of H2O2, for 360 min of sunlight irradiation at 70 °C.
Original languageEnglish
Pages (from-to)358-370
Number of pages13
JournalJournal of Industrial and Engineering Chemistry
Volume90
Early online date29 Jul 2020
DOIs
Publication statusPublished - 25 Oct 2020

Fingerprint Dive into the research topics of 'Highly efficient photocatalytic oxidative desulfurization of dibenzothiophene with sunlight irradiation using green catalyst of Ag@AgBr/Al-SBA-15 derived from natural halloysite'. Together they form a unique fingerprint.

Cite this