TY - JOUR
T1 - Hippocampal Theta Input to the Amygdala Shapes Feedforward Inhibition to Gate Heterosynaptic Plasticity
AU - Bazelot, Michaël
AU - Bocchio, Marco
AU - Kasugai, Yu
AU - Fischer, David
AU - Dodson, Paul D.
AU - Ferraguti, Francesco
AU - Capogna, Marco
PY - 2015/9/23
Y1 - 2015/9/23
N2 - The dynamic interactions between hippocampus and amygdala are critical for emotional memory. Theta synchrony between these structures occurs during fear memory retrieval and may facilitate synaptic plasticity, but the cellular mechanisms are unknown. We report that interneurons of the mouse basal amygdala are activated during theta network activity or optogenetic stimulation of ventral CA1 pyramidal cell axons, whereas principal neurons are inhibited. Interneurons provide feedforward inhibition that transiently hyperpolarizes principal neurons. However, synaptic inhibition attenuates during theta frequency stimulation of ventral CA1 fibers, and this broadens excitatory postsynaptic potentials. These effects are mediated by GABAB receptors and change in the Cl- driving force. Pairing theta frequency stimulation of ventral CA1 fibers with coincident stimuli of the lateral amygdala induces long-term potentiation of lateral-basal amygdala excitatory synapses. Hence, feedforward inhibition, known to enforce temporal fidelity of excitatory inputs, dominates hippocampus-amygdala interactions to gate heterosynaptic plasticity. Video Abstract: Hippocampal-amygdala interactions are critical for emotional memory, but the cellular mechanisms are unknown. In this paper, Bazelot, Bocchio et al. functionally demonstrate that GABAergic neurons of the basal amygdala gate principal neuron firing and heterosynaptic plasticity in the mouse amygdala.
AB - The dynamic interactions between hippocampus and amygdala are critical for emotional memory. Theta synchrony between these structures occurs during fear memory retrieval and may facilitate synaptic plasticity, but the cellular mechanisms are unknown. We report that interneurons of the mouse basal amygdala are activated during theta network activity or optogenetic stimulation of ventral CA1 pyramidal cell axons, whereas principal neurons are inhibited. Interneurons provide feedforward inhibition that transiently hyperpolarizes principal neurons. However, synaptic inhibition attenuates during theta frequency stimulation of ventral CA1 fibers, and this broadens excitatory postsynaptic potentials. These effects are mediated by GABAB receptors and change in the Cl- driving force. Pairing theta frequency stimulation of ventral CA1 fibers with coincident stimuli of the lateral amygdala induces long-term potentiation of lateral-basal amygdala excitatory synapses. Hence, feedforward inhibition, known to enforce temporal fidelity of excitatory inputs, dominates hippocampus-amygdala interactions to gate heterosynaptic plasticity. Video Abstract: Hippocampal-amygdala interactions are critical for emotional memory, but the cellular mechanisms are unknown. In this paper, Bazelot, Bocchio et al. functionally demonstrate that GABAergic neurons of the basal amygdala gate principal neuron firing and heterosynaptic plasticity in the mouse amygdala.
UR - http://www.scopus.com/inward/record.url?scp=84942163652&partnerID=8YFLogxK
U2 - 10.1016/j.neuron.2015.08.024
DO - 10.1016/j.neuron.2015.08.024
M3 - Article (Academic Journal)
C2 - 26402610
AN - SCOPUS:84942163652
SN - 0896-6273
VL - 87
SP - 1290
EP - 1303
JO - Neuron
JF - Neuron
IS - 6
ER -