Abstract
We study cohomology theories of strongly homotopy algebras, namely $A_\infty, C_\infty$ and $L_\infty$-algebras and establish the Hodge decomposition of Hochschild and cyclic cohomology of $C_\infty$-algebras thus generalising previous work by Loday and Gerstenhaber-Schack. These results are then used to show that a $C_\infty$-algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic $C_\infty$-algebra (an $\infty$-generalisation of a commutative Frobenius algebra introduced by Kontsevich). As another application, we show that the `string topology' operations (the loop product, the loop bracket and the string bracket) are homotopy invariant and can be defined on the homology or equivariant homology of an arbitrary Poincare duality space.
Translated title of the contribution | Homotopy algebras and noncommutative geometry |
---|---|
Original language | English |
Journal | Unknown |
Publication status | Published - Oct 2004 |