Abstract
Human activity recognition (HAR) is a broad area of research which solves the problem of determining a user’s activity from a set of observations recorded on video or low-level sensors (accelerometer, gyroscope, etc.) HAR has important applications in medical care and entertainment. In this paper, we address sensor-based HAR, because it could be deployed on a smartphone and eliminates the need to use additional equipment. Using machine learning methods for HAR is common. However, such, methods are vulnerable to changes in the domain of training and test data. More specifically, a model trained on data collected by one user loses accuracy when utilised by another user, because of the domain gap (differences in devices and movement pattern results in differences in sensors’ readings.) Despite significant results achieved in HAR, it is not well-investigated from domain adaptation (DA) perspective. In this paper, we implement a CNN-LSTM based architecture along with several classical machine learning methods for HAR and conduct a series of cross-domain tests. The result of this work is a collection of statistics on the performance of our model under DA task. We believe that our findings will serve as a foundation for future research in solving DA problem for HAR.
Original language | English |
---|---|
Title of host publication | Software Technology |
Subtitle of host publication | Methods and Tools - 51st International Conference, TOOLS 2019, Proceedings |
Editors | Manuel Mazzara, Bertrand Meyer, Jean-Michel Bruel, Alexander Petrenko |
Publisher | Springer |
Pages | 189-202 |
Number of pages | 14 |
ISBN (Print) | 9783030298517 |
DOIs | |
Publication status | Published - 2019 |
Event | 51st International Conference on Software Technology: Methods and Tools, TOOLS 2019 - Innopolis, Russian Federation Duration: 15 Oct 2019 → 17 Oct 2019 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 11771 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 51st International Conference on Software Technology: Methods and Tools, TOOLS 2019 |
---|---|
Country/Territory | Russian Federation |
City | Innopolis |
Period | 15/10/19 → 17/10/19 |
Bibliographical note
Publisher Copyright:© 2019, Springer Nature Switzerland AG.
Keywords
- Domain adaptation
- Human activity recognition