Identification and modelling of a GT-A fold in the α-dystroglycan glycosylating enzyme LARGE1

Benedetta Righino, Manuela Bozzi, Davide Pirolli, Francesca Sciandra, Maria Giulia Bigotti, Andrea Brancaccio, Maria Cristina De Rosa

Research output: Contribution to journalArticle (Academic Journal)peer-review

10 Citations (Scopus)
128 Downloads (Pure)

Abstract

The acetylglucosaminyltransferase-like protein LARGE1 is an enzyme that is responsible for the final steps of the post-translational modifications of dystroglycan (DG), a membrane receptor that links the cytoskeleton with the extracellular matrix in the skeletal muscle and in a variety of other tissues. LARGE1 acts by adding the repeating disaccharide unit [-3Xyl-α1,3GlcAβ1-] to the extracellular portion of the DG complex (α-DG); defects in the LARGE1 gene result in an aberrant glycosylation of α-DG and consequent impairment of its binding to laminin, eventually affecting the connection between the cell and the extracellular environment. In the skeletal muscle, this leads to degeneration of the muscular tissue and muscular dystrophy. So far, a few missense mutations have been identified within the LARGE1 protein and linked to congenital muscular dystrophy, and because no structural information is available on this enzyme, our understanding of the molecular mechanisms underlying these pathologies is still very limited. Here, we generated a 3D model structure of the two catalytic domains of LARGE1, combining different molecular modeling approaches. Furthermore, by using molecular dynamics simulations, we analyzed the effect on the structure and stability of the first catalytic domain of the pathological missense mutation S331F that gives rise to a severe form of muscle–eye–brain disease.
Original languageEnglish
Article number6
Pages (from-to)3145-3156
Number of pages12
JournalJournal of Chemical Information and Modeling
Volume60
Early online date14 May 2020
DOIs
Publication statusPublished - 22 Jun 2020

Fingerprint

Dive into the research topics of 'Identification and modelling of a GT-A fold in the α-dystroglycan glycosylating enzyme LARGE1'. Together they form a unique fingerprint.

Cite this