IDENTIFICATION, QUANTITATION AND DISTRIBUTION OF GIBBERELLINS IN FRUITS OF PISUM-SATIVUM L CV ALASKA DURING POD DEVELOPMENT

J L GARCIAMARTINEZ, C SANTES, S J CROKER, P HEDDEN

Research output: Contribution to journalArticle (Academic Journal)peer-review

69 Citations (Scopus)

Abstract

In addition to the previously-reported gibberellins: GA1, GA8, GA20 and GA29 (Garcia-Martinez et al., 1987, Planta 170, 130-137), GA3 and GA19 were identified by combined gas chromatography-mass spectrometry in pods and ovules of 4-d-old pollinated pea (Pisum sativum cv. Alaska) ovaries. Pods contained additionally GA17, GA81 (2-alpha-hydroxy GA20) and GA29-catabolite. The concentrations of GA1, GA3, GA8, GA19, GA20 and GA29 were higher in the ovules than in the pod, although, with the exception of GA3, the total content of these GAs in the pod exceeded that in the seeds. About 80% of the GA3 content of the ovary was present in the seeds. The concentrations of GA19 and GA20 in pollinated ovaries remained fairly constant for the first 12 ds after anthesis, after which they increased sharply. In contrast, GA1 and GA3 concentrations were maximal at 7 d and 4-6 d, respectively, after anthesis, at about the time of maximum pod growth rate, and declined thereafter. Emasculated ovaries at anthesis contained GA8, GA19 and GA20 at concentrations comparable with pollinated fruit, but they decreased rapidly. Gibberellins A1 and A3 were present in only trace amounts in emasculated ovaries at any stage. Parthenocarpic fruit, produced by decapitating plants immediately above an emasculated flower, or by treating such flowers with 2,4-dichlorophenoxyacetic acid or GA7, contained GA19 and GA20 at similar concentrations to seeded fruit, but very low amounts of GA1 and GA3. Thus, it appears that the presence of fertilised ovules is necessary for the synthesis of these last two GAs. Mature leaves and leaf diffusates contained GA1, GA8, GA19 and GA20 as determined by combined gas chromatography-mass spectrometry using selected ion monitoring. This provides further evidence that vegetative tissues are a possible alternative source of GAs for fruit-set, particularly in decapitated plants.

Original languageEnglish
Pages (from-to)53-60
Number of pages8
JournalPLANTA
Volume184
Issue number1
Publication statusPublished - 1991

Cite this