Implanted neurosphere-derived precursors promote recovery after neonatal excitotoxic brain injury

L Titomanlio, M Bouslama, V Le Verche, J Dalous, A M Kaindl, Y Tsenkina, A Lacaud, SAJ Peineau, V El Ghouzzi, V Lelievre, P Gressens

Research output: Contribution to journalArticle (Academic Journal)peer-review

26 Citations (Scopus)

Abstract

Brain damage through excitotoxic mechanisms is a major cause of cerebral palsy in infants. This phenomenon usually occurs during the fetal period in human, and often leads to lifelong neurological morbidity with cognitive and sensorimotor impairment. However, there is currently no effective therapy. Significant recovery of brain function through neural stem cell implantation has been shown in several animal models of brain damage, but remains to be investigated in detail in neonates. In the present study, we evaluated the effect of cell therapy in a well-established neonatal mouse model of cerebral palsy induced by excitotoxicity (ibotenate treatment on postnatal day 5). Neurosphere-derived precursors or control cells (fibroblasts) were implanted into injured and control brains contralateral to the site of injury, and the fate of implanted cells was monitored by immunohistochemistry. Behavioral tests were performed in animals that received early (4 h after injury) or late (72 h after injury) cell implants. We show that neurosphere-derived precursors implanted into the injured brains of 5-day-old pups migrated to the lesion site, remained undifferentiated at day 10, and differentiated into oligodendrocyte and neurons at day 42. Although grafted cells finally die there few weeks later, this procedure triggered a reduction in lesion size and an improvement in memory performance compared with untreated animals, both 2 and 5 weeks after treatment. Although further studies are warranted, cell therapy could be a future therapeutic strategy for neonates with acute excitotoxic brain injury.
Translated title of the contributionImplanted neurosphere-derived precursors promote recovery after neonatal excitotoxic brain injury
Original languageEnglish
Pages (from-to)865 - 879
Number of pages14
JournalStem Cells and Development
Volume20
DOIs
Publication statusPublished - May 2011

Fingerprint Dive into the research topics of 'Implanted neurosphere-derived precursors promote recovery after neonatal excitotoxic brain injury'. Together they form a unique fingerprint.

Cite this