Improved bounds on Brun’s constant

Dave Platt, Tim Trudgian*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

Abstract

Brun’s constant is (Formula Presented), where the summation is over all twin primes. We improve the unconditional bounds on Brun’s constant to 1.840503< B < 2.288490, which are about 13% tighter.

Original languageEnglish
Title of host publicationFrom Analysis to Visualization - A Celebration of the Life and Legacy of Jonathan M. Borwein, 2017
EditorsDavid H. Bailey, Naomi Simone Borwein, Richard P. Brent, Regina S. Burachik, Judy-anne Heather Osborn, Brailey Sims, Qiji J. Zhu
PublisherSpringer
Pages395-406
Number of pages12
ISBN (Print)9783030365677
DOIs
Publication statusPublished - 1 Jan 2020
EventJonathan Borwein Commemorative Conference, JBCC 2017 - Newcastle, Australia
Duration: 25 Sep 201729 Sep 2017

Publication series

NameSpringer Proceedings in Mathematics and Statistics
Volume313
ISSN (Print)2194-1009
ISSN (Electronic)2194-1017

Conference

ConferenceJonathan Borwein Commemorative Conference, JBCC 2017
CountryAustralia
CityNewcastle
Period25/09/1729/09/17

Fingerprint Dive into the research topics of 'Improved bounds on Brun’s constant'. Together they form a unique fingerprint.

  • Cite this

    Platt, D., & Trudgian, T. (2020). Improved bounds on Brun’s constant. In D. H. Bailey, N. S. Borwein, R. P. Brent, R. S. Burachik, J. H. Osborn, B. Sims, & Q. J. Zhu (Eds.), From Analysis to Visualization - A Celebration of the Life and Legacy of Jonathan M. Borwein, 2017 (pp. 395-406). (Springer Proceedings in Mathematics and Statistics; Vol. 313). Springer. https://doi.org/10.1007/978-3-030-36568-4_25