Improved radial basis function fluid-structure coupling via efficient localized implementation

Research output: Contribution to journalArticle (Academic Journal)peer-review

40 Citations (Scopus)

Abstract

Previous work by the authors has developed a universal interpolation scheme, using radial basis functions (RBFs), which results in a unified formulation for robust fluid-structure interpolation and high-quality mesh motion. The method has several significant advantages. Primarily, all volume mesh, structural mesh, and flow-solver-type dependence is removed entirely, as all operations are performed on totally arbitrary point clouds of any form. Hence, all connectivity requirements are removed from both the coupling and mesh motion problems. Furthermore, only matrix-vector multiplications are required during unsteady simulation because dependence relations are computed once prior to any simulation and then remain constant. This property means that the method is both perfectly parallel and totally independent from the flow-solver. However, the full method is expensive, since the dependence matrix between two sets of points is Npoints1 × Npoints2. The fluid-structure coupling behaviour can also be influenced by parameters used in the interpolation. To alleviate these difficulties a more efficient form of the RBF fluid-structure coupling is presented, which also greatly reduces the interpolation parameter influence. A pointwise form of the partition of unity approach is developed that localizes the interpolation, with results presented for static aeroelastic simulations of the Brite-Euram multi-disciplinary optimization wing using a very fine mesh containing 58 000 surface points. It is shown that a 58 × reduction in data size is achieved, and equally importantly the interpolation has a much smaller influence on final aeroelastic results.
Translated title of the contributionImproved radial basis function fluid-structure coupling via efficient localized implementation
Original languageEnglish
Pages (from-to)1188 - 1208
Number of pages21
JournalInternational Journal for Numerical Methods in Engineering
Volume78 (10)
DOIs
Publication statusPublished - Apr 2009

Bibliographical note

Publisher: John Wiley & Sons Ltd

Fingerprint Dive into the research topics of 'Improved radial basis function fluid-structure coupling via efficient localized implementation'. Together they form a unique fingerprint.

Cite this