Improving the accuracy of two-sample summary data Mendelian randomization: moving beyond the NOME assumption

Jack Bowden, Fabiola M Del Greco, Cosetta Minelli, Qingyuan Zhao, Debbie Lawlor, Nuala Sheehan, John Thompson, George Davey Smith

Research output: Contribution to journalArticle (Academic Journal)peer-review

183 Citations (Scopus)
337 Downloads (Pure)



Two-sample summary-data Mendelian randomization (MR) incorporating multiple genetic variants within a meta-analysis framework is a popular technique for assessing causality in epidemiology. If all genetic variants satisfy the instrumental variable (IV) and necessary modelling assumptions, then their individual ratio estimates of causal effect should be homogeneous. Observed heterogeneity signals that one or more of these assumptions could have been violated.


Causal estimation and heterogeneity assessment in MR require an approximation for the variance, or equivalently the inverse-variance weight, of each ratio estimate. We show that the most popular ‘first-order’ weights can lead to an inflation in the chances of detecting heterogeneity when in fact it is not present. Conversely, ostensibly more accurate ‘second-order’ weights can dramatically increase the chances of failing to detect heterogeneity when it is truly present. We derive modified weights to mitigate both of these adverse effects.


Using Monte Carlo simulations, we show that the modified weights outperform first- and second-order weights in terms of heterogeneity quantification. Modified weights are also shown to remove the phenomenon of regression dilution bias in MR estimates obtained from weak instruments, unlike those obtained using first- and second-order weights. However, with small numbers of weak instruments, this comes at the cost of a reduction in estimate precision and power to detect a causal effect compared with first-order weighting. Moreover, first-order weights always furnish unbiased estimates and preserve the type I error rate under the causal null. We illustrate the utility of the new method using data from a recent two-sample summary-data MR analysis to assess the causal role of systolic blood pressure on coronary heart disease risk.


We propose the use of modified weights within two-sample summary-data MR studies for accurately quantifying heterogeneity and detecting outliers in the presence of weak instruments. Modified weights also have an important role to play in terms of causal estimation (in tandem with first-order weights) but further research is required to understand their strengths and weaknesses in specific settings.
Original languageEnglish
Article numberdyy258
Number of pages15
JournalInternational Journal of Epidemiology
Early online date18 Dec 2018
Publication statusE-pub ahead of print - 18 Dec 2018


  • Two-sample summary-data Mendelian randomization
  • inverse-variance weighted estimate
  • Cochran’s Q statistic
  • outlier detection


Dive into the research topics of 'Improving the accuracy of two-sample summary data Mendelian randomization: moving beyond the NOME assumption'. Together they form a unique fingerprint.

Cite this