TY - JOUR
T1 - Improving the Track Friendliness of a Four-Axle Railway Vehicle Using an Inertance-Integrated Lateral Primary Suspension
AU - Lewis, Tim D
AU - Li, Yuan
AU - Tucker, Gareth
AU - Jiang, Jason Zheng
AU - Zhao, Yunshi
AU - Neild, Simon A
AU - Smith, Malcolm
AU - Goodall, Roger
AU - Dinmore, Neil
PY - 2019/9/12
Y1 - 2019/9/12
N2 - Improving the track friendliness of a railway vehicle can make a significant contribution to improving the overall cost effectiveness of the rail industry. Rail surface damage in curves can be reduced by using vehicles with a lower Primary Yaw Stiffness (PYS); however, a lower PYS can reduce high-speed stability and have a negative impact on ride comfort. Previous studies have shown that this trade-off between track friendliness and passenger comfort can be successfully combated by using an inerter in the primary suspension; however, these previous studies used simplified vehicle models, contact models, and track inputs. Considering a realistic four-axle passenger vehicle model, this paper investigates the extent to which the vehicle's PYS can be reduced with inertance-integrated primary lateral suspensions without increasing Root Mean Square (RMS) lateral accelerations when running over a 5km example track. The vehicle model, with inertance-integrated primary lateral suspensions, has been created in VAMPIRE, and the vehicle dynamics are captured over a range of vehicle velocities and wheel-rail equivalent conicities. Based on systematic optimisations using network-synthesis theory, several beneficial inertance-integrated configurations are identified. It is found that with such beneficial configurations, the PYS can be reduced by up to 47% compared to a base case vehicle, without increasing lateral RMS accelerations. This could result in a potential Network Rail Variable Usage Charge saving of 26%. With the beneficial inertance-integrated suspensions, further simulations are carried out to investigate the vehicle's performance in curve transitions and when subject to one-off peak lateral track irregularities.
AB - Improving the track friendliness of a railway vehicle can make a significant contribution to improving the overall cost effectiveness of the rail industry. Rail surface damage in curves can be reduced by using vehicles with a lower Primary Yaw Stiffness (PYS); however, a lower PYS can reduce high-speed stability and have a negative impact on ride comfort. Previous studies have shown that this trade-off between track friendliness and passenger comfort can be successfully combated by using an inerter in the primary suspension; however, these previous studies used simplified vehicle models, contact models, and track inputs. Considering a realistic four-axle passenger vehicle model, this paper investigates the extent to which the vehicle's PYS can be reduced with inertance-integrated primary lateral suspensions without increasing Root Mean Square (RMS) lateral accelerations when running over a 5km example track. The vehicle model, with inertance-integrated primary lateral suspensions, has been created in VAMPIRE, and the vehicle dynamics are captured over a range of vehicle velocities and wheel-rail equivalent conicities. Based on systematic optimisations using network-synthesis theory, several beneficial inertance-integrated configurations are identified. It is found that with such beneficial configurations, the PYS can be reduced by up to 47% compared to a base case vehicle, without increasing lateral RMS accelerations. This could result in a potential Network Rail Variable Usage Charge saving of 26%. With the beneficial inertance-integrated suspensions, further simulations are carried out to investigate the vehicle's performance in curve transitions and when subject to one-off peak lateral track irregularities.
KW - Inertance-Integrated Networks
KW - Suspension
KW - Vibration
KW - Railway Vehicle
U2 - 10.1080/00423114.2019.1664752
DO - 10.1080/00423114.2019.1664752
M3 - Article (Academic Journal)
JO - Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility
JF - Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility
SN - 0042-3114
ER -