In-plane elasticity of a novel auxetic honeycomb design

Jian Huang, Qiuhua Zhang, Fabrizio Scarpa*, Yanju Liu, Jinsong Leng

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

62 Citations (Scopus)
314 Downloads (Pure)

Abstract

This work presents a novel negative Poisson's ratio honeycomb design composed by two parts (a re-entrant hexagonal component and a thin plate part) that provide separate contributions to the in-plane and out-of-plane mechanical properties. The re-entrant hexagons provide the in-plane negative Poisson's ratio, the in-plane compliance and the out-of-plane compressive strength, while the thin plate part connecting the re-entrant hexagonal section bears the large out-of-plane flexibility. This paper focuses on the in-plane mechanical properties of the auxetic cellular structure. Theoretical models related to the in-plane uniaxial tensile modulus, the shear modulus, and the Poisson's ratios have been built and validated using the finite element techniques. The in-plane behavior of the honeycomb has also been investigated against the geometrical parameters of the unit cell using a parametrical analysis. The theoretical and numerical models illustrate good agreement and show the potential of its application in morphing structures. We also provide a benchmark of the auxetic configuration proposed in this work against negative Poisson's ratio topologies from open literature.

Original languageEnglish
Pages (from-to)72-82
Number of pages11
JournalComposites Part B: Engineering
Volume110
Early online date9 Nov 2016
DOIs
Publication statusPublished - 1 Feb 2017

Keywords

  • Auxetic
  • Cellular structure
  • Honeycomb
  • Morphing
  • Negative Poisson's ratio

Fingerprint

Dive into the research topics of 'In-plane elasticity of a novel auxetic honeycomb design'. Together they form a unique fingerprint.

Cite this