Incorporation of viscoelastic loss into the plane wave expansion approach to modelling composite transducers

L. Orr, Anthony Mulholland, Richard O'Leary, G. Hayward

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

Abstract

The plane wave expansion (PWE) method has been proposed as a theoretical model for periodic composite ultrasonic transducers. This paper extends previous work by importantly including viscoelastic loss in the material parameters. Some of the issues with model formulation, such as ill-conditioning in the large matrices, have been addressed through parameter scaling and Tikhonov regularisation. Identification of each mode of vibration has been carried out by visualising the spatial and temporal profiles of the displacement, electrical potential and Poynting vector. A comparison between the theoretical predictions and experimental data from a piezoelectric composite device is presented. The effect that the elastic properties of the passive phase have on device performance is also investigated. It is found that high shear attenuation in the passive phase gives rise to a large frequency stop band gap around the fundamental thickness mode.
Original languageEnglish
Title of host publication2000 IEEE International Ultrasonics Symposium, San Juan, Puerto Rico, 22/10/00
DOIs
Publication statusPublished - Oct 2006

Fingerprint Dive into the research topics of 'Incorporation of viscoelastic loss into the plane wave expansion approach to modelling composite transducers'. Together they form a unique fingerprint.

Cite this