Increased vulnerability of human ventricle to re-entrant excitation in hERG-linked variant 1 short QT syndrome

I. Adeniran, MJW McPate, HJ Witchel, JC Hancox, H. Zhang

Research output: Contribution to journalArticle (Academic Journal)peer-review

55 Citations (Scopus)
323 Downloads (Pure)

Abstract

The short QT syndrome (SQTS) is a genetically heterogeneous condition
characterized by abbreviated QT intervals and an increased susceptibility to arrhythmia and sudden death. This simulation study identifies arrhythmogenic mechanisms in the rapid-delayed rectifier K+ current (IKr)-linked SQT1 variant of the SQTS. Markov chain (MC) models were found to be superior to Hodgkin-Huxley (HH) models in reproducing experimental data regarding effects of the N588K mutation on KCNH2-encoded hERG. These ionic channel models were then incorporated into human ventricular action potential (AP) models and into 1D and 2D idealised and realistic transmural ventricular tissue simulations and into a 3D anatomical model. In single cell models, the N588K mutation abbreviated ventricular cell AP duration at 90% repolarization (APD90) and decreased the maximal transmural voltage heterogeneity (δV) during APs. This
resulted in decreased transmural heterogeneity of APD90 and of the effective refractory period (ERP): effects that are anticipated to be anti-arrhythmic rather than pro-arrhythmic. However, with consideration of transmural heterogeneity of IKr density in the intact tissue model based on the ten Tusscher-Noble-Noble-Panfilov ventricular model, not only did the N588K mutation lead to QT-shortening and increases in T-wave amplitude, but δV was found to be augmented in some local regions of ventricle tissue, resulting in increased tissue
vulnerability for uni-directional conduction block and predisposing to formation of re-entrant excitation waves. In 2D and 3D tissue models, the N588K mutation facilitated and maintained re-entrant excitation waves due to the reduced substrate size necessary for sustaining re-entry. Thus, in SQT1 the N588K-hERG mutation facilitates initiation and maintenance of ventricular re-entry, increasing the lifespan of re-entrant spiral waves and the stability of scroll waves in 3D tissue.

Translated title of the contributionIncreased Vulnerability of Human Ventricle to Re-entrant Excitation in hERG-linked Variant 1 Short QT Syndrome
Original languageEnglish
Pages (from-to)e1002313
JournalPLoS Computational Biology
Volume12
Issue number7
DOIs
Publication statusPublished - Dec 2011

Fingerprint

Dive into the research topics of 'Increased vulnerability of human ventricle to re-entrant excitation in hERG-linked variant 1 short QT syndrome'. Together they form a unique fingerprint.

Cite this